Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
organika_ekzamen.docx
Скачиваний:
97
Добавлен:
01.02.2022
Размер:
9.69 Mб
Скачать

6.5.2. Строение

В молекуле акриловой кислоты так же, как и в молекулах других ,-ненасыщенных карбоновых кислот (например, метакриловой, кротоновой, пропиоловой), имеется --сопряжённая система. За счёт этого происходит поляризация C=С-связи. У непредельных кислот, в которых кратная углерод-углеродная связь отделена от карбоксильной группы тетраэдрическим атомом углерода, сопряжения не происходит, и взаимодействие C=С-связи и СООН-группы возможно только посредством индуктивного эффекта.

6.5.3. Химические свойства

Непредельные кислоты, в которых кратная связь удалена от карбоксильной группы, обладают всеми свойствами алкенов (алкинов) и карбоновых кислот. Наличие сопряжённого фрагмента в молекулах ,-ненасыщенных кислот приводит к некоторым особенностям химического поведения таких соединений.

6.5.3.1. Кислотность

Кислоты с --сопряжённым фрагментом являются более сильными кислотами по сравнению с насыщенными. Это объясняется устойчивостью аниона кислотного остатка непредельной кислоты, в котором отрицательный заряд делокализован с участием -электронов двойной (или тройной) углерод-углеродной связи:

6.5.3.2. Реакции присоединения

Карбоновые кислоты, содержащие --сопряжённый фрагмент, как и всякие непредельные соединения, могут вступать в реакции присоединения. Эти их свойства аналогичны непредельным альдегидам, содержащим сопряжённый фрагмент -связей. Присоединение к непредельным кислотам идёт преимущественно по нуклеофильному пути по причине полярного --сопряжения и возникновения частичного положительного заряда на концевом атоме углерода сопряжённого фрагмента (см. строение акриловой кислоты — гл. 6.5.2), хотя реакция может начинаться при электрофильном содействии протона. Таким образом, они легко взаимодействуют со многими полярными системами, при этом отрицательная часть реагента присоединяется к -углеродному атому. Например:

6.5.3.3. Реакции радикального замещения

В реакции радикального замещения должны легко вступать полиненасыщенные карбоновые кислоты, в молекулах которых двойные (или тройные) связи разделены одним тетраэдрическим атомом углерода. К таким соединениям относятся и некоторые высшие непредельные кислоты, имеющие очень большое значение для жизнедеятельности организмов, такие как линолевая, линоленовая, арахидоновая (табл. 6.4). Возможность ненасыщенных соединений вступать в реакции радикального замещения обсуждалась в свойствах непредельных углеводородов (гл. 4.1.3). В результате отрыва атома водорода от метиленовой группы, расположенной между двойными связями, образуется свободный радикал, стабилизированный -р--сопряжением (подчёркнуто). Например:

CH3-(CH2)4-CH=CH-CH2-CH=CH-(CH2)7-COOH + X CH3-(CH2)4-CH=CH-ĊH-CH=CH-(CH2)7-COOH + HX Образование таких радикалов связано с регулированием биологического окисления в организмах. 6.5.4. Способы получения

Для получения ненасыщенных карбоновых кислот можно использовать такие же способы, что и для насыщенных кислот, а также способы образования кратной связи в молекулах насыщенных соединений.

В частности, ,-ненасыщенные кислоты легко образуются при нагревании замещённых карбоновых кислот, содержащих у -углеродного атома такие функциональные группы, как -ОН, -Cl, -Br, -NH2. Эти реакции являются обратными по отношению к рассмотренным в свойствах реакциям присоединения. Поэтому механизм реакции можно представить следующим образом:

6.5.5. Важнейшие представители

Биологическая активность непредельных карбоновых кислот значительно выше, чем у предельных кислот, как и у всех непредельных соединений. Среди ненасыщенных высших алифатических кислот три кислоты (линолевая, линоленовая и арахидоновая) не синтезируются в организме человека, но являются необходимыми для его нормальной жизнедеятельности. Эти кислоты называют незаменимыми жирными кислотами и иногда относят к группе витаминов под названием витамина F. Незаменимые жирные кислоты участвуют в животном организме в окислении насыщенных жирных кислот, принимая участие тем самым в процессе усвоения жиров и в жировом обмене кожных покровов. Биологическая активность арахидоновой кислоты выше биологической активности линолевой и линоленовой кислот в 10 раз. Линолевая и линоленовая кислоты содержатся в растительных маслах в виде триглицеридов, а в некоторых животных продуктах в виде фосфолипидов (гл. 6.5.6). Арахидоновая кислота встречается только в животных жирах. Полноценная пища должна иметь в своём составе 0.1% арахидоновой кислоты или 1% линолевой и линоленовой кислот. Акриловая кислота — бесцветная жидкость с острым запахом, хорошо растворима в воде. Температура кипения 414 К. Её получают каталитическим окислением пропена или карбонилированием ацетилена в присутствии воды и карбонилов никеля. Акриловая кислота и её производные применяются в промышленности полимерных материалов, в частности, полиакрилонитрил — основа волокна нитрон, используемого для производства лечебного белья полиакрилонитрил, а также как исходные вещества для разнообразных органических синтезов.

Метакриловая кислота — бесцветная жидкость с температурой кипения 433 К. В промышленности метакриловую кислоту и её производные получают присоединением циановодорода к ацетону. В промышленности полимерных материалов применяется её метиловый эфир для получения полиметилметакрилата (плексигласа). Полиметилметакрилат — прозрачный пластический материал, обладающий значительной механической прочностью и устойчивостью к действию химических реагентов. Его мировое производство превышает 1 млн т в год и будет в дальнейшем существенно расти. Олеиновая кислота — маслянистая бесцветная жидкость с температурой кипения 496 К при 13.3 кПа; в виде сложных эфиров глицерина входит в состав растительных масел (особенно много в оливковом). Получают гидролизом растительных масел. Сложные эфиры олеиновой кислоты используют в производстве лаков и красок. Линолевая кислота — бесцветная маслянистая жидкость с температурой кипения 503 К при 2.13 кПа; в виде сложных эфиров глицерина входит в состав растительных масел (в соевое и конопляное). Получают гидролизом растительных масел. Сложные эфиры линолевой кислоты используют в производстве лаков, красок, эмалей. Линоленовая кислота — бесцветная маслянистая жидкость с температурой кипения 503 К при 2.27 кПа; в виде сложных эфиров глицерина входит в состав растительных масел (в льняное). Получают гидролизом растительных масел. Сложные эфиры линоленовой кислоты используют в производстве лаков и красок.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]