Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практикум химии1ка_ред 14-05.doc
Скачиваний:
149
Добавлен:
13.02.2015
Размер:
1.94 Mб
Скачать

Лабораторная работа № 11

КОРРОЗИЯ МЕТАЛЛОВ

Цель работы: изучение условий возникновения коррозионных гальванических элементов и влияния различных факторов на скорость коррозии.

Коррозия– это процесс самопроизвольного разрушения металлических материалов вследствие химического и электрохимического взаимодействия с окружающей средой.

Первопричина коррозии металлов – их термодинамическая неустойчивость к компонентам окружающей среды.

По механизму протекания различают химическую и электрохимическую коррозию.

Химическая коррозия представляет собой самопроизвольное разрушение металла в сухих газах, органических и неорганических жидкостях, не проводящих ток, т. е. не сопровождается возникновением электрического тока в системе.

В промышленности она встречается в двигателях внутреннего сгорания, при термообработке металлов (газовая коррозия), а также в результате взаимодействия металлов с толуолом, бензолом, жидким топливом, расплавом серы и т. д. (коррозия в неэлектролитах).

На скорость химической коррозии влияют температура, состав реакционной среды, а также вторичные реакции, вид и свойства продуктов коррозии.

Электрохимическая коррозия – разрушение металла в среде электролита. Этот тип коррозии наиболее распространен. Он возникает на границе металл – электролит и зависит от природы металла и типа электролита. Существенное условие для протекания электрохимической коррозии – это возможность совместного протекания окислительно-восстановительного процесса: анодной реакции ионизации металла и катодной реакции восстановления окислителя на поверхности металла.

Электрохимическая коррозия может являться результатом работы большого числа возникающих на поверхности металла при соприкосновении его с электролитом макро- (имеющие размеры, хорошо различимые невооруженным глазом) или микрогальванических (обнаруживаемых лишь при помощи микроскопа) элементов. Самопроизвольное протекание коррозионного процесса возможно, если , т. е. для электрохимического растворения необходимо присутствие в электролите окислителя, равновесный окислительно-восстановительный потенциал которого в данных условиях положительнее равновесного потенциала металла (см. табл.14).

Коррозия металла в растворах электролитов сопровождается протеканием одновременно нескольких стадий.

1. Анодное окисление металла .

2. Катодное восстановление окислителя (деполяризатора)

а) в кислой среде:

водородная деполяризация;

б) в нейтральных средах (морская и речная вода) на воздухе

кислородная деполяризация;

в) без кислорода или для очень активных металлов

.

3. Кроме первичных реакций в растворе протекают вторичные реакции, приводящие к образованию твердых продуктов коррозии:

, при pH7;

;

. Анодное окисление металла .

2. Катодное восстановление окислителя (деполяризатора)

а) в кислой среде:

водородная деполяризация;

Основным отличием процессов электрохимической коррозии от процессов в гальваническом элементе является отсутствие внешней цепи. Электроны при коррозии не выходят из металла, а движутся внутри. Химическая энергия реакции окисления металла не передается в виде работы, а лишь в виде теплоты. Причиной энергетической неоднородности металла и сплава могут быть кристаллическая неоднородность сплава и его гетерогенности по химическому и фазовому составу, наличие примесей в металле, пленок оксидов и др. на поверхности. При наличии энергетической неоднородности процесс коррозии приводит к неравномерному разрушению металла.

Например, при электрохимической коррозии железа, содержащего примеси углерода, в морской воде образуется гальванический элемент:

FeH2O, O2, ClC

(анод) (коррозионная среда морская вода) (катод)

При этом протекают следующие процессы:

– анодное окисление железа: ;

– восстановление кислорода на катодных участках:

;

– вторичные реакции: .

Суммарная реакция:

Аналогично протекает коррозия стали в морской воде, нейтральных или слабо щелочных растворах электролитов, во влажном воздухе.

Энергетическая неоднородность поверхности металла может появиться за счет неодинаковой концентрации окислителя на различных участках поверхности металла. Участки с большей концентрацией окислителя (например, кислорода) являются катодными, и на них идет процесс восстановления, а участки с меньшей концентрацией окислителя – анодными, и на них происходит окисление металла.

Скорость коррозии выражается основными тремя показателями: весовым (г/м2∙ч; мг/дм2∙сут), глубинным (мм/год) и электрохимическим (mA/см2). Скорость коррозии зависит от скорости самой медленной стадии, это могут быть реакции анодного растворения металла и катодного восстановления окислителя.

Катодное восстановление кислорода зависит от скорости диффузии кислорода, его концентрации (растворимости) и температуры. Максимальная скорость наблюдается при 70-80 °С.

Скорость катодного выделения водорода возрастает с увеличением температуры и концентрации ионов водорода. Существенно на скорость выделения водорода влияет природа катодных участков. Одни металлы катализируют выделение водорода (Pt, Co, Ni и др.), а другие замедляют (Hg, Pb, Cd и др.).

Иногда скорость коррозии зависит от скорости анодной реакции, обычно для тех металлов, которые пассивируются: хром, алюминий, титан, цирконий, никель и др. Пассивностью металла называется состояние его повышенной коррозионной устойчивости, вызванное образованием на поверхности металла оксидных или иных защитных слоев.

Окислители играют двойную роль в коррозионных процессах: с одной стороны, они могут восстанавливаться и этим ускорять коррозию металлов, с другой (для металла способного пассивироваться) – вызывать пассивирование металла и резкое торможение коррозии.

Некоторые ионы, например ионы хлора Cl, активируют металлы, препятствуя их пассивации. Причиной активности ионов хлора является его высокая адсорбируемость на металле и высокая растворимость хлоридов металлов. Ионы хлора вытесняют пассиваторы с поверхности металла, облегчают переход ионов металла в раствор. Поэтому в присутствии в растворе ионов хлора или других активаторов у многих металлов способность к пассивации падает или совсем исчезает, например, у железа, хрома, никеля, алюминия и др.

Экспериментальная часть

Опыт 1. Контактная коррозия.

Выполнение работы

В фарфоровую лодочку налейте 5-6 капель 2 н HCl и опустите с одного конца зачищенные наждачной бумагой кусочек цинка, с другого медную проволочку (или пластинку). Где происходит выделение газа и почему? Напишите уравнение реакции. Соедините цинк с медной проволокой. Как изменится интенсивность выделения водорода и на каком из металлов он выделяется? Укажите направление перехода электронов в паре цинк-медь. Какой металл будет являться катодом для ионов водорода? Запишите процессы на аноде и катоде, укажите каков механизм коррозии цинка, контактирующего с медью в кислой среде.

Опыт 2. Коррозия алюминия во влажном воздухе.

Выполнение работы

Тщательно зачистите кусочек алюминия и опустите в пробирку с раствором нитрата ртути (II) на 1 - 2 мин. Что наблюдаете? Запишите уравнение реакции.

Слейте раствор из пробирки и сполосните кусочек алюминия дистиллированной водой. Положите кусочек алюминия из пробирки на фильтровальную бумагу и оставьте на 5-7 мин. на воздухе. На поверхности металла вскоре появятся рыхлые белые хлопья гидроксида алюминия. Алюминий, освобожденный от оксидной пленки, контактирует с выделившейся ртутью и во влажном воздухе (O2, H2O) начинает интенсивно корродировать. Определите анод и катод в образовавшейся гальванопаре, запишите процессы на них, учитывая, что катодный процесс идет с кислородной деполяризацией. Запишите полное уравнение реакции коррозии алюминия.

Опыт 3. Влияние ионов хлора на коррозию.

Выполнение работы

Возьмите два кусочка алюминия и опустите один в пробирку с раствором хлорида меди (II), другой – с раствором сульфата меди. Напишите уравнения реакций. В какой пробирке более интенсивно выделятся водород и почему? В пробирку с сульфатом меди добавьте немного сухой соли хлорида натрия. Что наблюдаете? Дайте объяснение происходящему процессу. Для гальванопары алюминий-медь запишите уравнения стадий электрохимической коррозии, учитывая, что в растворе данного электролита окислителем является вода.