Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом Немчанинова(измен) .doc
Скачиваний:
291
Добавлен:
13.02.2015
Размер:
950.78 Кб
Скачать

1.5. Сходство и различие промышленных взрывчатых дисперсий на гелеобразной и эмульсионной основе.

Гелеобразные ВВ с жидким горючим - низкоконцентрированные эмульсии (менее 10 % дисперсной фазы). Количество загустителя в составе ГВВ зависит от требуемых свойств геля, его консистенции. Так, небольшое количество КМЦ (до 2 %) при оптимальном соотношении между КМЦ и сшивающим агентом дает легкоподвижные гели, которые хорошо перекачиваются по шлангам, в то время как увеличение содержания КМЦ дает жесткие гели.

ЭВВ на основе обратных эмульсий - высококонцентрированные эмульсии, у которых более 90 % дисперсной фазы. По своим свойствам они сходны с ГВВ: не только имеют большую вязкость, но и обладают предельным напряжением сдвига, что объясняется образованием пространственных структур, связывающих капельки дисперсной фазы, и упругими свойствами междуфазных слоев, содержащих эмульгатор. Капельки существенно деформированы, а дисперсионная среда имеет вид тонких прослоек - эмульсионных пленок [26].

Как ГВВ, так и ЭВВ обладают достаточно высокой водоустойчивостью. Относительная водоустойчивость ГВВ обусловлена тем, что переход линейных макромолекул загустителя в сетчатые сопровождается потерей их растворимости, поскольку вода не в состоянии разрушить химические связи между звеньями макромолекул загустителя. Водоустойчивость ЭВВ обусловлена тем, что капельки раствора окислителя покрыты пленкой нерастворимого горючего.

Как показал обзор публикаций, в технологии ГВВ хорошие результаты химической газификации дает нитрит натрия, который реагирует с аммиачной селитрой (АС) с выделением азота. Однако в ЭВВ эффективность нитрита натрия уменьшается, поскольку в данном случае капли раствора АС покрыты масляной пленкой. Чем лучше качество ЭВВ, тем меньше свободной АС для реакции с нитритом натрия, поэтому в состав ЭВВ необходимо добавлять второй реагент, который взаимодействовал бы с нитритом натрия с выделением газа.

Рассмотрим технологические аспекты приготовления ВВВ в смесительно-зарядных машинах по непрерывному процессу. Для получения ГВВ загущенный раствор окислителя, горючее, сшивающий и аэрирующий агенты в заданном соотношении (в соответствии с рецептурой) подаются одновременно в смеситель непрерывного действия, перемешиваются на проходе через рабочую зону смесителя и смесь перекачивается в скважину.

Использование соответствующих быстродействующих сшивающих агентов и проведение реакции сшивания при определенных условиях, обеспечивающих время гелеобразования, соответствующее времени пребывания смеси в смесителе и зарядном рукаве, позволяет получать ГВВ с необходимыми свойствами при содержании загустителя, например КМЦ или полиакриламида, 1-3 % и концентрации сшивающего агента до 10 % от загустителя.

Для регулирования кислородного баланса и снижения содержания воды в составе ГВВ добавляют сухую АС. Однородная смесь образуется в низкоскоростных смесителях малого объема, при этом особых требований к чистоте и качеству исходных компонентов не предъявляется.

Гелеобразная непрерывная фаза существенно изменяет характер кристаллизации растворов окислителя при их охлаждении ниже температуры насыщения. В отличие от обычных и загущенных растворов окислителя гелеобразная фаза препятствует диффузии и росту кристаллов, поэтому при переохлаждении геля образуются мелкокристаллические, а иногда и коллоидные частицы, равномерно распределенные в гелеобразной фазе и не нарушающие структуру взрывчатой смеси. В данном случае гелеобразная фаза служит своего рода модификатором (ингибитором) роста кристаллов, повышая за счет этого детонационную способность смеси, так как способствует повышению поверхности контакта между окислителем и горючим. Таким образом, изменение структуры заряда в гелеобразных ВВ связано с естественным свойством геля подавлять взаимодействие содержащихся в нем частиц: микроскопические кристаллы-зародыши оказываются экранированными материалом трехмерной сетки геля и, следовательно, не срастаются друг с другом.

ЭВВ получают путем смешивания горючего (нефтепродукта) с эмульгатором, а затем эту смесь перемешивают с раствором окислителя до образования устойчивой эмульсии. Для повышения чувствительности к детонации в эмульсию вводят сенсибилизатор - микросферы или аэрирующие добавки.

По данным источника [26] видно, что расход мощности растет пропорционально степени дисперсности эмульсии: чем больше мощность и, следовательно, интенсивность перемешивания, тем меньше конечный размеркапель. Вследствие этого дисперсность ЭВВ на несколько порядков выше, чем ГВВ такого же состава по основным компонентам (таблица 5)

Таблица 5

Тип ВВ

Размер частиц, мм

Плотность,кг/м3

Скорость детонации, м/с

Теплотавзрыва,кДж/кг

Игданит

2,0

840

4000

3780

ГВВ

0,2

1250

4500

3000

ЭВВ

0,002

1250

5600

3000

1.6. Способы управления реологическими свойствами эмульсионных взрывчатых веществ.

Известны 3 способа управления реологическими свойствами ЭВВ [19]:

  • химический, путем введения полимерных загустителей в эмульсионную матрицу;

  • физический, посредством клапана сильного сдвига;

  • введение в эмульсионную матрицу системы полимер-сополимер.

При химическом загущении введение полимерных загустителей возможно как в масляную фазу при поддержании постоянной температуры масляной фазы и загустителя, так и в качестве отдельного компонента в готовую охлажденную эмульсионную матрицу.

В случае применения механического загущения, полученную эмульсию охлаждают до температуры окружающей среды, дважды перекачивают и затем подвергают гомогенизации посредством клапана сильного сдвига при 300 psi противодавления. Этот процесс обычно называют гомогенизацией. По мере того, как происходит гомогенизация, размер диспергированных капель раствора соли-окислителя становится меньше и, следовательно, вязкость эмульсионной фазы увеличивается. Это увеличение вязкости часто является желательным, так как позволяет эмульсионному взрывчатому веществу сопротивляться проникновению воды, сохранять свою стабильность и оставаться в скважине, а не вытекать из скважины, расширяющейся вверх, или в трещины либо изломы. Более полное описание механического загущения нашло отражение в патенте [19].

Подробные методики проведения загущения описаны в методической части данной дипломной работы.

2. Методическая часть

2.1. Оборудование, используемое в эксперименте

При работе в лаборатории для приготовления, исследования качества эмульсионной матрицы использовались:

1.Миксер Philips с переключателем скорости и насадками лопаточного типа;

2. Миксер роторный;

3. Вискозиметр ротационный Brookfield;

4. Термостат Ultratherm BWT-U;

5. Водяная баня-термостат Grant;

6. Весы электронные Sartorius с точностью измерения до десятых грамма;

7. Кондуктометр (ёмкостемер) Data Precision 938;

8. Сушильный шкаф;

9. pH-метр.

2.2. Методика приготовления эмульсионного состава на основе аммиачной селитры

Цель: создание устойчивой эмульсии на основе аммиачной селитры и внедрение в неё дополнительных компонентов: эмульгаторов, загустителей, структуризаторов.

Состав эмульсии (масс.%):

Окислитель: %

Нитрат аммония 78

Вода 16

Горючее:

Масло /Дизельное топливо 3,5 - 5.5

Эмульгатор 1,5 – 0,5

Дополнительные компоненты:

Полиакриламид 7

Железоаммониевые квасцы 2

Технический регламент получения образцов эмульсии для последующих испытаний можно представить в виде схемы, состоящей из четырех блоков, соответствующих участкам подготовки компонентов (1 и 2), эмульгирования (3) и проверки качественных характеристик образцов эмульсии (4).

Технологическая схема исследовательской лаборатории, основныеразделы технологического регламента.

Участок 1:

Стадия подготовки масляной фазы связана с приготовлением смеси нефтепродукта (масла И-40, И-12, дизельное топливо) с эмульгатором, который позволяет удерживать дисперсную систему в стабильном состоянии долгое время.

Компоненты взвешиваются на аналитических весах фирмы SARTORIUS. Содержание эмульгатора в эмульсии составляет 0,5-2,5 % и постоянно варьируется, таким образом определяем оптимальное содержание конкретного эмульгатора. После этого второй компонент масляной фазы, основанного на индустриальном масле, добавляется к эмульгатору. Доля масляной фазы в эмульсии составляет 6 %. Полученную смесь нагревают на водяной бане до температуры около 90 оС.

Участок 2:

Получаемый в лаборатории ТВС образец эмульсии - это основа промышленного взрывчатого состава. Взрывчатое вещество - это энергонасыщенный материал, основная энергия в. котором сосредоточена в аммиачной селитре, поэтому ее процентное содержание должно быть как можно больше и составляет на практике 78% (из расчёта кислородного баланса).

Используемая аммиачная селитра подвергается предварительной сушке в конвекционном шкафу при температуре ≈ 80 оС, после чего используется для приготовления насыщенного раствора аммиачной селитры в воде при температуре ≈90 оС. Аммиачную селитру и воду взвешивают и смешивают. Оптимальное содержание воды с практической точки зрения - 16%. Этот уровень содержания воды в эмульсии обеспечивает низкую чувствительность к трению и удару. В ходе нагрева с повышением температуры растворимость аммиачной селитры возрастает, и при 95-100оС она полностью растворяется, образуя раствор окислителя. Все оборудование, используемое в опыте, должно быть изготовлено из нержавеющей стали, так как аммиачная селитра обладает сильным коррозионным действием. В полученный раствор окислителя добавляется часть испарившейся воды и дополнительно вводится небольшое количество концентрированной азотной кислоты для понижения рН раствора окислителя до оптимального значения рН=2,7-3,5. В целях безопасного применения и хранения контейнера-капельницы с азотной кислотой используется дополнительная обечайка с эмалированной внутренней поверхностью. Контроль рН осуществляется штатным рН-метром HANNA-707, процесс ведется включенной местной вытяжной вентиляции. Компенсация излишне низкого рН из-за избытка введенной концентрированной азотной кислоты производится за счет гидрокарбоната натрия, который повышает значение рН.

Участок 3:

Эмульгирование, т.е. приготовление эмульсионной матрицы (соединение масляной фазы и раствора окислителя).

Стадия эмульгирования состоит из двух этапов:

  • смешивание компонентов масляной фазы и раствора окислителя с помощью бытового лопастного миксера;

  • обработка «завязавшейся» эмульсии на роторном диспергаторе PRM-2500.

Время смешивания на лопастном миксере составляет 3 минуты при скорости вращения 1200 об/мин, на диспергаторе - 1,5 минуты при скорости вращения 1250-1300 об/мин.

По окончанию диспергирования размер эмульсии составляет 1-10 мкм.

Участок 4

Контроль параметров качества эмульсионной массы

Замеры вязкости и емкости эмульсионной матрицы производится с помощью вискозиметра Brookfield и кондуктометра Data Precision 938, соответственно.

После получения эмульсии и определения ее начального качества определяется срок хранения, в течение которого характеристики качества не меняются в соответствии с техническими условиями на этот продукт. Хранение полученных образцов проводят в полипропиленовых контейнерах.

2.3. Методика введения загустителя гидрозоля ПАА в раствор окислителя.

Схема эксперимента, задачей которого является проверка эффективности загущения эмульсии посредством сшивки ПАА, находящегося в растворе окислителя (РО) эмульсионной матрицы состоит из нескольких шагов:

ШАГ 1: введение ПАА в РО

ШАГ 2: получение эмульсионной матрицы, содержащей ПАА

ШАГ 3: распределение в готовой эмульсии инициатора сшивки ПАА

Процесс изменения вязкости эмульсионной системы с ПАА в растворе окислителя при реализации каждого из шагов этой схемы был исследован в зависимости от:

1) температурных и концентрационных условий приготовления раствора окислителя, содержащего ПАА;

2) влияния ПАА на процесс образования, реологию и стабильность эмульсии;

3) интенсивности загущения эмульсии, после введения инициатора сшивки полимера.

ПАА, как технический реагент, доступен в порошкообразном виде. Несмотря на это, использование порошка ПАА сильно затруднено из-за его слипания при растворении и набухании в воде, что влечет за собой дополнительные трудности выбора режима смешения и получения однородного раствора. По этой причине оказалось предпочтительней использовать 6%-й водный гель ПАА, который так же широко распространен в качестве технического продукта.

2.4. Методика введения загустителя гидрозоля ПАА в масляную фазу.

Раствор геля ПАА вводится на начальном этапе в масляную фазу (содержание и концентрация ПАА варьируется 1-6%) при температуре 80-90оС. Дальнейшие стадии приготовления эмульсии соответствуют приготовлению обычной эмульсии.

2.5. Методика введения загустителя гидрозоля ПАА как отдельного компонента в готовую эмульсию.

Причем, в новой схеме на стадии приготовления раствора ПАА, условия подбирались таким образом, чтобы массовое соотношение с эмульсионной матрицей раствора и содержание в нем ПАА одновременно выполняли несколько условий:

– дополнительный раствор ПАА вводимый в матрицу должен обладать высокой подвижностью для его подачи насосом на реальной установке в шланг, а затем в узел перемешивания с матрицей

– количество вводимого в эмульсионную матрицу раствора с ПАА должно быть сопоставимым с расходом раствора орошения, используемого для смазки шлангов во время зарядки скважин

– количество ПАА в этом растворе должно быть сопоставимым с содержанием желатинизатора в гелеобразных составах, которого из опыта работы с гелями должно быть достаточно, чтобы повысить вязкость геля до консистенции каучуков.

Преследуя эти цели, было проведено несколько опытов по определению степени разбавления очень вязкого исходного 6%-го геля ПАА для его превращения в высоко подвижную субстанцию при сохранении в этом растворе как можно большей концентрации желатинизатора. В результате было найдено то минимальное количество воды, которое было необходимо для снижения вязкости геля. Оказалось, что исходный малотекучий вязкий 6%-ый гель ПАА достаточно разбавить в 1,5 ÷ 2 раза до концентрации ПАА в растворе 3 ÷ 4% для придания ему свойств высокоподвижной среды. При этом разбавление легко осуществлялось при комнатной температуре в режиме простого смешивания геля с водой. После разбавления вязкость у растворов ПАА получалась низкая на уровне 1000 сП. Дополнительно было отмечено, что разбавленные растворы ПАА склонны к повышенной адгезии на стенках лабораторной посуды, что может быть их недостатком.

Готовим водный раствор полиакриламида (ПАА) концентрации 4 %. Для приготовления 4% раствора ПАА возьмём 40 г 6% ПАА из герметичного бюкса и растворяем его в 20г воды при нагреве 30-40оС. Отбираем из свежеприготовленного раствора 40г в медицинские шприцы и добавляем в свежеприготовленную эмульсионную матрицу (температура ≈ 40 оС) на миксере Philips на пониженных оборотах.