Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом Немчанинова(измен) .doc
Скачиваний:
292
Добавлен:
13.02.2015
Размер:
950.78 Кб
Скачать

1.2.2. Принцип построения пЭмВв

Эмульсия - это система из двух жидких фаз, где в одной жидкости во взвешенном состоянии мельчайшие капельки другой жидкости. Система, в которой одно вещество распределено в виде мелких частиц в другом веществе называется дисперсной системой, а распределённое вещество - дисперсной фазой системы, окружающее вещество - дисперсной средой. Эмульсии относят к грубодисперсным системам, так как дисперсная фаза эмульсии состоит из сравнительно больших частиц.

Эмульсии на основе аммиачной селитры, как окислителя, и машинных масел, как горючего, широко используются при приготовлении эмульсионных взрывчатых веществ (ЭВВ).

Сравнение многочисленных источников указывает на то, что в общем виде состав эмульсии выглядит таким образом ( компоненты расположены по уменьшению концентрации содержания):

  1. окислительная фаза (неорганические соли);

  2. вода;

  3. горючая фаза (твердые и жидкие виды топлива);

  4. эмульгаторы;

  5. аэрирующие и модифицирующие агенты.

Для всех типов ЭВВ характерно однородное распределение компонентов по массе вещества и заметно большая (по сравнению с простейшими смесями типа аммиачная селитра - дизельное топливо (АС-ДТ) площадь контакта окислителя и горючего. Их особенность состоит в том, что в отличие от смесей АС-ДТ, в которых ДТ или другое низковязкое горючее покрывает гранулы аммиачной селитры и частично впитывается внутрь гранул, в ЭВВ жидкое горючее покрывает тонкой пленкой капли насыщенного раствора АС (иногда смешанных растворов АС и натриевой селитры), образуя так называемую обратную эмульсию «вода в масле». Процесс эмульгирования осуществляется в смесителях с быстро вращающейся мешалкой в присутствии эмульгаторов.

Между водной и масляной фазами образуется большая поверхность раздела фаз. Внутри находится насыщенный и стабилизированный границей поверхности раздела фаз высококонцентрированный раствор аммиачной селитры, а окружающие его оболочки в местах соприкосновения капелек состоят из топлива с очень большой теплотой сгорания. С этим связано важное свойство эмульсионных ВВ - высокая скорость детонации (более 5000м/с) при сравнительно невысокой плотности заряда (1,2 г/ см3) [6].

Основой всех составов является матричная эмульсия, образующаяся путём смешения в специальных аппаратах раствора окислителя и горючей жидкой фазы, где внешнюю фазу образуют различные нефтепродукты

Исследования русских и зарубежных патентов говорят о том, что по консистенции ЭВВ могут быть твердыми, пастообразными, и текучими в зависимости от состава и типа эмульгатора. Вязкость их определяется в большинстве случаев вязкостью топливной фазы.

Технология эмульсионных взрывчатых веществ имеет принципиальное отличие от технологии получения порошкообразных, гранулированных ВВ. Если в их производстве лежат физико-химические процессы (измельчение, сушка, смешивание компонентов, укупорка), то производство эмульсионных ВВ, состоящих из высококонцентрированного водного раствора АС и жидкого нефтепродукта (ДТ, индустриальное масло), базируется на гидромеханических процессах. Раствор АС, нагретый до 60-90оС, диспергируется в нефтепродукте за счёт интенсивного перемешивания. В образовавшуюся смесь для стабилизации добавляют эмульгатор, и масса приобретает свойства устойчивой эмульсии, в которой каждая капля (глобула) раствора АС покрыта тонкой плёнкой нефтепродукта (эмульсия «вода в масле») [7].

Известно, что в коллоидных системах могут существовать 2 группы сил взаимодействия [4]:

  1. Дальнодействующие поверхностные силы:

  • ванн-дер-ваальсовы силы притяжения между частицами;

  • силы электрического двойного слоя (отталкивания между поверхностями одинакового знака, притяжения для противоположных знаков)

  1. Ближнедействующие поверхностные силы:

  • химические связи молекул с поверхностными группами посредством ионной, ковалентной и водородной связей;

  • физическая связь молекул посредством дипольного взаимодействия;

  • гидрофобная связь при ассоциации двух негидратированных частиц в водной среде;

  • борновские силы отталкивания между атомами.

В обратных эмульсиях серьёзных доказательств существования двойного электрического слоя не имеется. На расстоянии большем порядка 1нм глобулы эмульсии не притягиваются друг к другу ван-дер-ваальсовыми силами. Вопрос о силах притяжения и отталкивания капель обратных эмульсий можно считать открытым и требующим экспериментального и теоретического решений. При стабилизации эмульсий следует учитывать не только силы отталкивания-притяжения между каплями, но и адсорбционные явления, связанные с действием ПАВ, т.е. эмульгатора.

На качество эмульсии большое влияние оказывает качество окислителя, горючего и эмульгатора. Наличие примесей затрудняет получение эмульсии и делает ее неустойчивой. Чем выше качество эмульсии, тем больше циклов «нагревание - охлаждение» она выдерживает без расслоения. Чем эффективнее эмульгатор, тем меньше его нужно для получения качественной эмульсии. Например, всего 0,2 % сорбитолеата нужно для получения эмульсии, которая остается стабильной после четырех циклов «нагревание - охлаждение» от -20 до +20 °С.

При определенной интенсивности перемешивания капли дробятся только до какого-то предела. Чтобы более тонко раздробить капли за короткое время, нужно интенсивное перемешивание в высокоскоростных мешалках, создающих большие значения скоростей сдвига, и, следовательно, большие затраты мощности. Так, эмульсия, полученная в смесителе при 1500 об/мин, разрушается после одного цикла «нагревание - охлаждение», в то время как аналогичная по составу эмульсия, полученная

при 10000 об/мин, не только оставалась неизменной после пяти циклов «нагревание - охлаждение», но имела намного большую вязкость, чем в первом случае [8].

Эмульсионные ПВВ обычно содержат 94-95% дисперсной фазы (раствор АС в воде) и 5-6 % дисперсной среды (горючее и эмульгатор). Представителями этого типа ВВ являются порэмиты и гранэмиты различных марок.

Сравнительная характеристика порэмитов разработки Гос НИИ «Кристалл» [5] (таблица 3).

Таблица 3

%:

Аммиачная селитра или АС-ДС

30

50

70

эмульсия порэмита

70

50

30

Теплота взрыва,

МДж/ кг, (ккал/кг)

3,19 (763)

3,26 (779)

3,53 (844)

Плотность заряжания,

г/см3

1,25÷1,35

1,35÷1,45

1,10÷1,20

Объемная концентрация энергии,

МДж/ дм3 (ккал/дм3)

4,15 (992)

4,57 (1091)

4,06 (971)

Скорость детонации,

км/ с

4,8÷5,2

4,2÷5,0

3,5÷4,2

Водоустойчивость за 24 часа, кг/м2

1,0

2,0

5,0

Кислородный баланс, %

минус 1,1

минус 0,3

минус 1,4

Сравнительная характеристика ЭВВ разработки Гос НИИ «Кристалл» [5] (таблица 4).

Таблица 4

Наименование ВВ

Теплота взрыва, ккал/кг

Концентрация энергии, ккал/дм3

Плотность заряжания кг/м3

Скорость детонации, км/с

Газовая вредность, л/кг

Гранулотол

Игданит

980

980

1000

5,0-5,2

275

920

820

900

2,2-2,7

45

Порэмит 1А

720

900

1200

4,9-5,1

40

Окислительная (дисперсная) фаза.

Основным компонентом окислителя, а чаще и единственным, в рецептурах ВВ является аммиачная селитра. Ее высококонцентрированные растворы владеют достаточным количеством кислорода для завершения химических реакций во время взрыва. Поэтому большинство водонаполненных ВВ базируется на моноокислителе - аммиачной селитре.

В качестве основной части эмульсионных рецептур (до 95 % вес.) используются водные растворы окислителей на основе нитратов, хлоратов и перхлоратов неорганических веществ. Особенно важным и популярным окислителем, практически применяемым во всех ЭВВ, является нитрат аммония или аммиачная селитра. Часто ЭВВ содержат эвтектические смеси нескольких солей окислителей, из которых предпочтительными являются нитраты кальция и натрия. Также возможно применение других неорганических кислородсодержащих солей, которые могут выступать в качестве компонентов окислительной фазы эмульсии, к ним могут быть отнесены калийные соли - нитрат, хлорат и перхлорат калия; натриевые соли - хлорат и перхлорат натрия; соли кальция - нитрат, хлорат и перхлорат кальция; соли аммиака - хлорат и перхлорат аммония; соли лития - хлорат и перхлорат лития; соли магния - нитрат, хлорат и перхлорат магния; соли алюминия - нитрат, хлорат и перхлорат алюминия; соли бария - нитрат, хлорат и перхлорат бария; соли цинка - нитрат, хлорат и перхлорат цинка или смеси этих веществ, взятых в различных пропорциях [5].

В зависимости от температурных режимов получения и применения ЭВВ используют растворы окислителей различной концентрации. В большинстве составов используются пересыщенные растворы с высокой концентрацией вплоть до расплавов, так как вода является балластом взрывчатой системы. Количество и тип окислителей также определяется необходимостью поддержания близкого к нулевому кислородного баланса ПВВ, что ставит проблему введения большого количества аммиачной селитры и обуславливает наличие раствора окислителей с высокой температурой кристаллизации.

Массовая доля основного окислителя (аммиачной селитры) составляет 50-95 %, а другие соли добавляются не более 40 % от его массовой доли.

Наиболее удобно использовать комбинации нескольких солей окислителей, которые образуют растворы или расплавы при температурах ниже плавления индивидуальных солей, или эвтектические смеси. Поэтому большинство известных ЭВВ содержат эвтектические смеси окислителей с водой, что позволяет снизить содержание воды и улучшить технологичность получения при более низких температурах. Кроме того, применение нитратов натрия и кальция улучшает кислородный баланс ЭВВ и даёт возможность увеличить содержание горючего в эмульсии, что положительно сказывается на стабильности системы. Одновременно эти окислители увеличивают плотность составов и замедляют процесс кристаллизации внутренней фазы эмульсии. В то же время введение большого количества дополнительных окислителей нежелательно, так как это уменьшает объём газообразных продуктов взрыва из-за образования твёрдых окислов и снижает теплоту взрывчатого превращения.

Важное значение для обеспечения надёжной детонации в скважинах и при хранении в патронах принадлежит явлению кристаллизации солей в эмульсиях, особенно при отрицательной температуре, которое приводит к разрушению эмульсионной структуры. Для снижения эксплуатационной температуры вводят различные добавки, влияющие на процесс кристаллизации. Капли окислителя в эмульсии по своей природе метастабильны и обнаруживают тенденцию к слиянию и кристаллизации, что сопровождается блокировкой кристаллической решётки и отверждением составов.

Кристаллизация солей - процесс вполне естественный, поскольку при охлаждении эмульсии водный раствор окислителей находится в пересыщенном состоянии. Одним из способов замедления процесса является снижение температуры кристаллизации раствора окислителей. Этого можно добиться путём подбора соотношения солей-окислителей, близкого к эвтектическому. Так, использование соотношения нитратов аммония и кальция, равного 1:1, позволило снизить температуру кристаллизации до температуры окружающей среды. Для снижения температуры кристаллизации в состав включают 4-15 % мочевины. Большой эффект даёт введение нитрата монометиламина, и в данном случае температуру кристаллизации солевого раствора можно снизить до минус 18 оС [9].

В ходе исследований научных публикаций выявлено, что одним из недостатков ее при разработке рецептур ВВ есть особенность насыщать растворы при повышении температуры и рекристализоваться при ее снижении. Это принуждает применять высокотермальные технологии при изготовлении большинства водонаполненных взрывных веществ и заряжании их в буровые скважины. В анализе источников найдена следующая закономерность - при снижении температуры 90 % раствора аммиачной селитры до 80о С начинается его кристаллизация, которая при дальнейшем снижении температуры к такой степени повышает вязкость, что приводит к закупорке трубопроводов. Это особенно неблагоприятно в зимнее время, поскольку ликвидация таких пробок должна проводиться кипятком или острым паром.

Для предотвращения кристаллизации снижают концентрацию раствора окислителя до таких значений, при которых он остается текучим и при минусовых температурах, а нехватку кислорода компенсируют введением в раствор гранулированной аммиачной селитры.

Второй путь снижения температуры кристаллизации окислителя состоит в создании эвтектических смесей аммиачной селитры с другими веществами: натриевой или кальциевой селитрами, мочевиной. Эвтектические смеси способствуют не только снижению температуры кристаллизации, но и температуры замерзания. Так, например, эвтектика аммиачной и кальциевой селитр обеспечивает снижение температуры начала кристаллизации до 40-50 оС, а температуры замерзания до - 20 оС.

Кальциевая селитра при такой температуре может насыщать растворы до концентрации 45,3 %, а при введении в состав ВВ 10-30 % кальциевой селитры температура замерзания состава снижается до - 58 оС.

Растворы аммиачной селитры 55 % - ной концентрации, кристаллизуются при минусовых температурах. Наиболее низкую температуру замерзания (-16,9 оС) имеет раствор 45,3 % - ной концентрации [13].

Таким образом, мы делаем вывод, что эвтектические смеси повышают текучесть взрывчатых веществ, но при этом могут привести к снижению их энергетического потенциала. Так, например, добавка кальциевой селитры приводит к появлению твердых окислов в продуктах детонации (СаО), которые во время охлаждения отбирают часть тепловой энергии реакции взрывчатого разложения. Исключением является добавка мочевины (N2H4СO), которая приводит к снижению содержания в ВВ воды при сохранении текучести смесей, и за счет этого повышает их энергетический уровень.

Одним из известных путей снижения температуры замерзания растворов солей является введение в их состав антифризов, которыми являются низкомолекулярные соединения типа аминов низших кислот. При этом они должны обладать высокой растворимостью в насыщенных растворах окислителей, отсутствием растворяющего действия по отношению к основному компоненту ВВ, невысокой вязкостью и другими свойствами.

В состав окислителя эмульсионных ВВ вводят натриевую селитру. Это объясняется тем, что в балансе энергии химической реакции взрывного преобразования количество тепла, затраченного на образование исходных компонентов ВВ, вычитается из теплоты реакции. Поскольку теплота образования кальциевой селитры вдвое больше теплоты образования натриевой селитры, возникает как бы резерв теплоты и итоговая теплота реакции с натриевой селитрой несколько выше. Однако натриевая селитра не обеспечивает существенного снижения температуры эвтектической точки, что вынуждает вести технологические процессы при повышенной температуре. Так, например, бинарный раствор окислителя эмульсионного ВВ порэмит, содержащий аммиачную и натриевую селитры, начинает кристаллизоваться уже при температуре 60-65 оС [14].

Применяются также ингибиторы роста и модификаторы формы кристаллов.

В настоящее время рассматривают два механизма укрупнения частиц эмульсии: коалесценцию и переконденсацию. Коалесценция обусловлена стремлением системы к равновесному состоянию, отвечающему разделению системы на две исходные фазы с минимальной межфазной поверхностью. Поэтому с течением времени происходит самопроизвольное слияние отдельных капелек эмульсии друг с другом. В результате этого изменяется её дисперсность, а, следовательно, и свойства. Однако, несмотря на термодинамическую предопределённость процесса, его кинетика зависит от множества факторов, как способствующих, так и препятствующих коалесценции. Усиление последних позволяет увеличить срок хранения эмульсии.

Переконденсация, или изотермическая перегонка, - процесс самопроизвольного переноса вещества из более мелких частиц дисперсной фазы в крупные. Её причина - это увеличение химического потенциала вещества дисперсной фазы и рост капиллярного давления в частицах дисперсной фазы при уменьшении их размеров [15].

Кристаллизация окислительной фазы эмульсии, в конечном счете, приводит к полной потере детонационной способности при хранении ЭВВ. Это подтолкнуло исследователей к поиску возможных путей воздействия на процесс кристаллизации эмульсий. Был предложен ряд способов по нейтрализации этого явления:

  1. Физическая интерференция, т.е. введение материалов, действующих как физический барьер на рост кристаллов. В качестве этих материалов используют мелкодисперсный алюмининий, гильсонит. Механизм воздействия заключается в физическом предотвращении быстрого роста кристаллов в одном направлении.

  2. Загущение раствора окислителя. Для этого применяют различные смолы, например гуаргам, но лучше ксантановые. Механизм основан на увеличении вязкости раствора, что затрудняет передачу материала из раствора к поверхности кристаллов.

  3. Введение координирующих солей типа нитрата кальция, которые действуют совместно с аммиачной селитрой и при выпадении в осадок образуют двойную соль. Для надёжной стабилизации необходимо около 25 % нитрата кальция, так как при большем его содержании повышается чувствительность.

  4. Модификация образующихся кристаллов с помощью ПАВ.

  5. Получение мельчайших капель окислителя и снижение поверхностного натяжения, что исключает зародышеобразование при охлаждении и пересыщении, так как в этом случае размер капли меньше размера образующегося кристалла [5].

Общеизвестно, что при контакте окислителя с серосодержащими рудами может возникнуть разогрев и в конечном итоге непроизвольный взрыв ПВВ. Применение ЭВВ замедляет этот процесс за счёт защиты частиц окислителя гидрофобным слоем горючего, но полностью исключить этот контакт нельзя. С целью регулирования процесса разложения ЭВВ при использовании его в серосодержащих рудах в состав вводят соли из группы HCOH, щавелевой и винной кислот, лучше K, Na или Ca, а также применяют карбодиимиды, бигуаниды, дициандиамин, мочевину. Так, при введении 3 % дифенилкарбодиимида ЭВВ не возгорается и не взрывается при температуре 180 оС в течение 1 часа при давлении 30 кг/см2 в контакте с серными рудами [5].

Для повышения чувствительности к инициирующему импульсу в состав окислительного раствора вводят перхлорат натрия.

Масляная фаза нефтепродукта (дисперсионная среда).

Горючая, или дисперсионная, среда эмульсионных ПВВ составляет в большинстве составов 4-8 % весовых или в пересчёте на плотности фаз занимает 10-15 % объёма. Используемые в производстве ЭВВ компоненты масляной фазы имеют отрицательный кислородный баланс, причём большого порядка (до 350), что определяет использование их в небольшом количестве. Но снижать содержание масляной фазы можно лишь в пределах, обеспечивающих условия образования и хранения эмульсии. Кроме того, по данным работы, существует его оптимальное, с точки зрения обеспечения детонации, количество горючего. Таким образом, верхний предел содержания горючего ограничивается кислородным балансом взрывчатого вещества, а нижний - эмульгирующей способностью ПАВ [5].

Все горючие вещества, применяемые для изготовления ЭВВ, можно разделить на 3 группы:

  1. Преимущественно органические вещества, не смешивающиеся с водой: бензин; толуол; бензол; ксилол; нефть; газовое, жировое и парафиновое масла; воск; жирные кислоты; индустриальные масла; мазут; и т.д. - и образующие дисперсионную среду эмульсий.

  2. Органические жидкости, смешивающиеся с водой: этиловый и метиловый спирты; этиленгликоль; формамид и другие жидкие соединения азота, которые частично заменяют воду и снижают точку кристаллизации.

  3. Твёрдые горючие вещества: гильсонит; уголь; алюминий; сера; зёрна культур, которые вводятся как дополнительное горючее.

Одной из особенностей многих горючих компонентов является их дуализм. Он проявляется в том, что горючий компонент в рецептуре ВВ может одновременно выполнять две функции - горючего и сенсибилизатора.

Для нормального протекания химических реакций во время взрыва горючий компонент должен хорошо обогащаться углеродом и водородом. Первый определяет вид кислородного баланса и величину энергии взрыва. При сбалансированном кислородном балансе (КБ=0 %) имеет место максимальное выделение энергии. Водород также вносит вклад в энергию взрыва, и особенно, в объем образующихся при этом газов за счет образования паров воды [14].

Для получения матричной эмульсии в качестве внешней фазы могут применяться все жидкие нефтепродукты, имеющие соответствующий уровень вязкости. Можно использовать все виды масел, консистенция которых при нормальной температуре может быть представлена любой формой - от очень жидкой до нетекучей. Например, всеми видами дизельного топлива, машинного масла и вазелинового масла.

Изучение литературы выявило, что дизельное топливо - наиболее распространенный горючий компонент из-за доступности, относительной дешевизны и наличия достаточного количества углерода и водорода. Обобщенная брутто формула его имеет вид С19Н25. Оно имеет малую плотность, которая позволяет получать на его основе хорошо текучие эмульсионные ВВ. От плотности зависит способность ДТ растекаться по гранулам аммиачной селитры и проникать в их поры и трещины. Существенным недостатком ДТ является резкий запах и токсичные свойства [16].

Индустриальные масла, мазут, используемые в рецептурах ВВ как горючие компоненты, обладают более высокой, по сравнению с ДТ, вязкостью, что способствует стабилизации составов гранулированных ВВ и повышает вязкость в водосодержащих. Их смеси с ДТ служат регуляторами вязкости эмульсионных ВВ. Высокое содержание в составе углерода и водорода (С84Н16 у индустриального масла, С71Н115 у мазута) требует повышенного содержания кислорода в окислителях.

Индустриальные масла общего назначения маловязки, не выделяют летучих компонентов, не создают сильного запаха, менее чувствительны к огню и хорошо прокачиваются.

Ряд масел (приборное, «мягчитель») имеют низкую температуру застывания и могут применяться в изготовлении труднозамерзающих составов ВВ [17].

В качестве горючей добавки могут быть использованы нитропарафин с тремя атомами водорода, патока (8-12 %), сланцевое масло, смесь масла и нефтяной смолы, таловое масло, криоген, диметилсульфоксид, тиомочевина, формамид, диметилформамид [12].

Также могут применяться все виды воска, которые могут при нагреве переходить в жидкое состояние. Это воски, извлекаемые из нефти, например, вазелиновый воск, микрокристаллический воск и парафин; минеральные воски, такие как земляной воск и горный воск; воски животного происхождения, например, спермацетный воск; воски насекомых - пчелиный или китайский воск и др.

В качестве материалов масляной фазы также могут использоваться насыщенные жирные кислоты, длина цепи у которых превышает шесть атомов углерода, высшие спиртовые соединения и некоторые масла растительного происхождения.

В ряде публикаций предлагается использовать в качестве части горючей среды неочищенные или частично очищенные нефтепродукты типа сырого парафина, остаточных масел, бункерного топлива, смолистых веществ, а также различные погоны нефти, например газойль [18-20].

В России для изготовления ЭВВ применяются масла индустриальные ГОСТ 20799-88 или ТУ 38.101413-90. Масла индустриальные ГОСТ 20799-88 - очищенные дистиллятные и остаточные масла или их смеси без присадок. Индустриальные масла ТУ 38.101413-90 - минеральные масла глубокой селективной очистки из сернистых нефтей с противоокислительной, противоизносной, антиржавеющей и противопенной присадкой [5].