Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
NADEGN_1.docx
Скачиваний:
8
Добавлен:
29.03.2015
Размер:
3.52 Mб
Скачать
  1. Расчёт надёжности системы с постоянным поэлементным резервированием.

При поэлементном резервировании резервируются отдельно элементы системы.

Э10 Э20 Эi0 Эn0

Э11 Э21 Эi1 Эn1

……………………………………………………………

Э1j Э2j Эij Эnj

……………………………………………………………

Э1m Э2m Эim Эnm

1-я группа 2-я группа i - я группа n - я группа

Определим количественные характеристики надёжности системы.

Введём обозначения:

i = 1, 2, ……..,n - вероятность безотказной работы элемента Эio на интервале времени (0, t);

j = 1, 2, ……..,m; i = 1, 2, …….,n - вероятность безотказной работы элемента Эij на интервале времени (0, t).

Запишем вероятность отказа i - й группы.

Имеем

i = 1, 2, …….,n.

Запишем вероятность безотказной работы i - ой группы. Имеем

Запишем вероятность безотказной работы системы с поэлементным резервированием

или

Для равнонадёжных элементов системы имеем:

  1. Режим облегченного (тёплого) резерва.

Рассмотрим случай, когда время безотказной работы всех элементов изделия подчиняется экспоненциальному закону распределения. В этом случае процессы, характеризующие работу изделия являются марковскими. Для определения характеристик надёжности можно использовать математический аппарат теории марковских случайных процессов.

В режиме облегченного резерва резервные элементы находятся в режиме недогрузки до момента их включения в работу. Пусть 1 - интенсивность отказа резервного элемента в режиме недогрузки до момента их включения в работу. 0 - интенсивность отказа резервного элемента в состоянии работы.

Введём в рассмотрение состояния ,

S0 - основной элемент исправен и работает, m резервных элементов исправны и находятся в режиме недогрузки.

S1 - основной элемент отказал, работает 1 - ый резервный элемент, (m - 1) резервные элементы исправны и находятся в режиме недогрузки.

S2 - отказал 1 - ый резервный элемент, работает 2 - ой резервный элемент, (m - 2) резервных элементов исправны и находятся в режиме недогрузки.

Si - отказал i - й резервный элемент, работает i - й резервный элемент, (m - i ) резервных элементов исправны и находятся в режиме недогрузки.

Sm - отказал (m - 1) - ый элемент, работает m - ый резервный элемент.

Sm+1 - отказал m -ый резервный элемент.

Построим граф состояний:

……. 0

S0 S1 Si Sm+1

Запишем систему дифференциальных уравнений Колмогорова. Для этого введём обозначения:

P0(t) - вероятность нахождения резервированной системы в момент времени t в состоянии S0.

Pi(t) - вероятность нахождения резервированной системы в момент времени t в состоянии Si , i = 0, 1, ….., m, m + 1.

;

………………………………………………….

………………………………………………….

.

Начальные условия:

.

Применим к системе дифференциальных уравнений Колмогорова преобразование Лапласа. Получим систему линейных алгебраических уравнений вида: Pi(t) - оригинал

Pi(S) - изображение по Лапласу

i = 0, 1, ……, m +1

…………………………………………….

…………………………………………….

Решая систему уравнений получим

Найдём оригинал . Имеем

где

Здесь - вероятность отказа резервированной системы с облегченным резервированием.

Определим вероятность безотказной работы системы с облегченным резервированием. Имеем:

Определим среднее время безотказной работы системы с облегченным резервированием. Имеем:

Формула бинома Ньютона

где

При a = 1 имеем:

Выполнив преобразование, получим:

где .

Определим частоту отказов резервированной системы. Имеем

;

или

Определим интенсивность отказов резервированной системы. Имеем

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]