Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

meditsin1128_1

.pdf
Скачиваний:
95
Добавлен:
10.04.2015
Размер:
2.05 Mб
Скачать

Общий уровень шума оценивается дисперсией шума δi2ш, а при опреде-

лении отношения сигнал / шум используется среднеквадратическое значение шума, то есть:

J = Iф

(1.28)

δ 2 ,

 

где Iф - значение выходного сигнала ОЭП, на уровне которого измеряется шум.

В большинстве случаев при работе ОЭП в ОИП, дисперсия шумового сигнала зависит от величины информативного (полезного) сигнала. Это

приводит к непостоянству отношения сигнал / шум в рабочем диапазоне изменения измеряемого светового потока. Поэтому принято разделять ОЭП на три группы по особенностям зависимости шума выходного сигнала от уровня полезного сигнала (УПС).

1. Шумы постоянны - то есть не зависят от УПС (возможно в случае

преобладания тепловых шумов): σi2щ = const = k1 .

2. Дисперсия шума изменяется пропорционально амплитуде полезного сигнала (преобладает дробовый шум): σi2щ = k2 Icр .

3. Дисперсия шума изменяется пропорционально квадрату амплитуды полезного сигнала: σi2щ = k3 Ic2р (где k1 , k 2 , k 3 - постоянные коэффициен-

ты).

Необходимо учитывать, что каждый из перечисленных видов шума зависит от ширины полосы f, в которой оценивается их дисперсия, поэтому отношение сигнал / шум τ, а следовательно и порог чувствительности ОЭП зависят от f.

В некоторых случаях для удобства сравнения различных типов ОЭП используют приведенное значение дисперсии:δio2 = σi2щ / f .

Функциональные свойства ОЭП описываются рядом характеристик таких как: световая характеристика (люкс - амперная); дифференциальная чувствительность ОЭП; частотная характеристика; спектр мощности шумов; температурная характеристика; вольтовы характеристики; зонные характеристики; апертурные характеристики; градационная характеристика ОЭП; порог контрастной чувствительности; эксплутационные и конструктивные особенности ОЭП.

Световая характеристика (люкс амперная) представляет зависимость величины выходного тока от величины светового потока, строго определенного

спектрального состава, I = f (φ) (соответствующего спектру стандартного

источника) - это энергетическая характеристика.

Одним из важнейших параметров ОЭП является дифференциальная чувствительность ОЭП. Она определяется как:

31

Q= I/ Ф

(1.29)

Она, как правило, отличается от чувствительности в рабочей точке:

Qр=Iрр

(1.30)

Частотная характеристика, определяющая зависимость чувствительности QОЭП, от частоты модуляции оптического излучения: Qd=φ1(fм).

Спектр мощности шумов - зависимость, описывающая распределением

дисперсии шума σi2щ по частотам: σ 2 = ϕ2 ( f ) .

Температурная характеристика, показывающая как изменяются различные параметры ОЭП (например, Q, шумы и др.) при изменении температуры чувствительного слоя.

Вольтовы характеристики, которые выражают зависимость таких параметров приемников излучения как интегральная чувствительность, уровень

шума и др., от питающего напряжения: Qimg= φ3(UОЭП).

Апертурные характеристики, выражающие зависимость амплитуды выходного сигнала ОЭП от числа чередующихся черно-белых полос, накладываемых на поверхность светочувствительного слоя. Эта характеристика определяет разрешающую способность ОЭП.

Градационная характеристика ОЭП, выражающая связь между контрастом регистрируемых сигналов и величиной перепада сигнала.

На основе световой характеристики, записываемой обычно в результате аппроксимации в виде:

Iф = k Φγo ,

(1.31)

где к - постоянный коэффициент, γ - показатель степени определяемой зависимости.

Электрический контраст определяется зависимостью:

K э = Iф / Iфmax ,

(1.32)

где Iф - перепад выходного сигнала, Iфmax - максимальное значение

сигнала.

Значение электрического контраста связано с контрастом по потоку:

K n = Φo / Φomax ,

(1.33)

где ΔΦo - перепад в падающем световом потоке, Φomax - максимальное значение потока.

32

Эта связь имеет вид:

K э = 1(1K n )γ

(1.34)

Обычно K э < 1, поэтому:

K э = γ K n .

(1.35)

Как следует из последнего выражения при степенной характеристике функции преобразования ОЭП равным контрастом на входе ОЭП соответствуют равные (пропорциональные) изменения электрического контраста ОЭП.

Порог контрастной чувствительности - равный величине контраста по потоку, при котором формируется перепад выходного сигнала, достаточный для регистрации отличия в величине светового потоков. Этот параметр зависит от общей величины потока, на котором определяется перепад от контрастности тока.

Эксплутационные и конструктивные особенности ОЭП оценивают набором таких параметров как: площадь и топология светочувствительного слоя; оптические свойства с коэффициентами преломления и отражения, апертурный угол; напряжения питания и способ его подведения; температура светочувствительного слоя и средства ее стабилизации; виброустойчивость, вибропрочность, ударная прочность и др. параметры, определяющие механические, климатические, динамические условия эксплуатации и свойства ОЭП.

1.4.1. Типовые функциональные элементы фотометрических ИП

Перечислим типы наиболее широко распространяемых ОЭП и их основные технические характеристики и параметры.

Первым важнейшим функциональным элементом оптических ИП является источник излучения, используемый для воздействия (облучения) света на исследуемую пробу жидкости. Известно применение нескольких видов источников: ламп накаливания и светодиодов.

Лампы накаливания. К их достоинствам могут быть отнесены: дешевизна, высокие эксплуатационные качества, легкость управления световым потоком, большой выбор. Лампы накаливания бывают непрерывного излучения, импульсного излучения, вакуумные, газонаполненные (соединение галогенов). В лабораторных оптических ИП широко применяются ксеноновые, дейтериевые ртутные лампы высокого давления.

Светодиоды - это элементы, в которых реализуется явление излучательной рекомбинации p-n - переходов. К их достоинствам могут быть отнесены: малые габариты, экономичность, высокий коэффициент преобразования мощности тока, проходящего через p-n - переход в видимое или инфра-

33

красное излучение до 50 %, достаточно высокая монохроматичность излучения, возможность электрической модуляция светового потока. Большой выбор световодов, а так же фотодиодов позволяет разрабатывать оптические ИП, хорошо приспособленные к решению той или иной задачи путем создания специальных спектрально согласованных структур оптопар «светодиод - фотодиод». Оптопара может быть выполнена в едином конструктивном исполнении, а их масса может составлять единицы граммов. Основными материалами для изготовления светодиодов служит арсенид и фосфид галлия, соединения типа GaJnP и GaAsP . В качестве ИИ могут использоваться ОКГ. Излучение такого источника в значительной степени является монохроматическим, когерентным, направленным и поляризованным, что делает применение этих ИИ весьма эффективным. Также применяются ИИ на основе искрового разряда и электрической дуги.

Вторым важным элементом оптического ИП является оптический фильтр, являющийся практически обязательным. Иногда в процессе измерений оптических характеристик ИБС используется несколько фильтров. Основной характеристикой фильтра является его спектральная характеристика пропускания τ(λ) и величина оптической плотности D.

По виду спектральной характеристики фильтры подразделяются на:

-полосовые, обеспечивающие пропускание в узком диапазоне длин волн

иотсекающие излучение с длинами волн, не входящими в этот диапазон,

-фильтры, пропускающие излучение с большей или меньшей, чем заданная, длинной волны.

Выбор фильтра существенно влияет на отношение сигнал/шум, получаемые на выходе оптических АИУ.

Другими требованиями, предъявляемыми к фильтрам, является механическая прочность, стабильность характеристик при разных условиях работы, технологичность изготовления.

Известно применение нескольких типов фильтров. Это - абсорбционные, интерференционные и нейтральные.

Абсорбционные отличает от остальных избирательность поглощения излучения. Они изготавливаются из твердых, жидких, газообразных избирательно поглощающих сред. К ним относятся цветные стекла, окрашенный желатин, пластмассы, пленки германия, кремния, пары Cl2 , Br2 , щелочно -

галоидные соли и другие материалы.

Для монохроматизации инфракрасных излучений нашли применение кристаллической пластинки из некоторых диэлектриков NaCl, кварц и др., а в длинноволновой инфракрасной области спектра в качестве отсекающих применяются дифракционные решетки - эшелоты, действующие как регулярные, шероховатые поверхности.

Интерференционные фильтры основаны на явлении интерференции излучения в пластинках и тонких пленках. Эти фильтры обладают очень узкой полосой пропускания - единицы нанометра (10-9). Такую полосу пропускания можно получить двумя путями. Первый - интерференцией двух поляризованных лучей (поляризационно-интерфереционные фильтры). Второй - мно-

34

голучевой интерференцией при многократных отражениях между параллельными полупрозрачными зеркалами.

Из других способов реализации избирательного пропускания можно отметить так же использование эффекта полного внутреннего отражения и явления дисперсии излучения в веществе и окружающей среде. Интерференционные фильтры широко применяются в спектрофотометрических приборах.

Нейтральные фильтры необходимы для ослабления или разделения потока излучения без изменения спектрального состава. Они имеют, как правило, равномерную спектральную характеристику пропускания в рабочем для оптического ИП диапазоне длин волн и интегральный коэффициент пропускания меньше 1.

Интерференционный фильтр не единственный функциональный элемент оптических ИП для формирования монохроматического излучения. В лабораторных спектрофотометрах широко используются различные конструкции монохроматоров: зеркальные, решетчатые, призменные.

Среди других функциональных узлов оптических ИП наибольшее разнообразие в принципах конструктивного построения имеют: прерыватели излучения, позволяющие реализовать процесс формирования импульсных потоков (вращающиеся диски, ячейки Керра и др.); компенсаторы; конденсаторы; линзы; объективы и т.п.

Среди большого разнообразия оптических АИУ можно выделить: по количеству используемых кювет (одно- и двухканальные преобразователи); по способу введения светового луча в ИБС (импульсные и непрерывные); по способу создания импульсных потоков (с прерываниями или с импульсными источниками излучения); по спектру падающего светового потока (с непрерывным (сплошным) спектром светового потока или со спектром светового потока имеющим разрывы в спектре (перепады) т.е. широких или узких); по принципу временной засветки ИБС световым потоком в разных участках спектра (с последовательной во времени засветкой ИБС разными участками спектра оптического луча и с параллельной засветкой ИБС т.е. одновременно во всех участках спектра луча); по количеству одновременно неиспользуемых фотоэлектрических преобразователей (с одним или с несколькими преобразователями ОЭП).

При разработке оптических ИП достаточно часто возникает задача по исключению "паразитной" засветки и потоков света, рассеиваемых деталями оптических элементов и узлов.

При решении этой задачи часто применяют концепцию так называемых световых замков, при реализации которых детали оптических ИП, а так же внутренние поверхности кюветных отделений ИП чернятся (воронением, электрохимически, окрашиванием). Большое число деталей оптических систем ИП (монохроматоров, компенсаторов и др.) требуют прецизионного исполнения с привлечением высоких технологий, в том числе и технологий точной механики.

Одним из жестких требований при разработке и изготовлении кювет для ИЖ является требование плоскостности и параллельности их стенок, перпен-

35

дикулярных ходу лучей. Основными материалами при изготовлении кювет является кварц, обычное стекло, кварцевое стекло, плексиглас, полистирол и другие прозрачные для выбранной области спектра материалы.

Выводы:

Несмотря на широкие диагностические возможности фотометрических методов, техническое обеспечение исследований живого организма разработано еще недостаточно. Совершенствование существующих и создание новых методик, так необходимых для клинической практики, а также разработка новых дешевых приборов с высокими эксплуатационными характеристиками возможны только при условии эффективного использования новейших научно-технических достижений и в первую очередь оптоэлектроники и ее элементной базы, микроэлектроники и волоконно-оптической техники. Можно указать несколько перспективных направлений развития фотометрической техники для клинико-физиологических исследований.

1.Разработка упрощенных, недорогих и узкоспециализированных приборов для выполнения отдельных видов анализа. Это направление представлено большой группой гемоглобинометров, оксиметров, сахариметров и др. При разработке таких приборов спектральный и динамический диапазон, чувствительность, точность и производительность выбираются с учетом специфики соответствующего исследования.

2.Разработка упрощенных многоцелевых приборов, рассчитанных на небольшое количество исследований или на работу в узком спектральном диапазоне.

3.Разработка спектральных анализаторов, отличающихся сложными оптическими системами, широким выбором источников излучения в разных областях спектра, высококачественными системами регистрации информации.

4.Разработка общеаналитических приборов высокого класса на модульном принципе, позволяющих с помощью основного прибора и различных вспомогательных блоков проводить различные исследования и регистрировать конечный результат как в графической, так и в цифровой формах. Такие приборы могут быть многоканальными, т.е. дают возможность проводить одновременно анализ нескольких проб, и многопрограммными, позволяющими осуществлять одновременно несколько анализов на одной пробе.

5.Разработка автоматических комплексных анализаторов, включающих оптические блоки в качестве внешних (интерфейсных) устройств, которые сопрягаются с ПЭВМ для комплексной обработки всей исследовательской информации.

36

2. Фотометрия в оценке гемореологических показателей

2.1. Патологические механизмы седиментации эритроцитов

Изучение механизма реакции оседания эритроцитов имеет не только теоретическое, но и большое практическое значение; выяснение сущности процесса оседания и причин, вызывающих в одних случаях ускорение его, а в других - замедление, создает основу для определения принципов интерпретации показаний СОЭ клинической практике.

На протяжении длительного периода времени, в течение которого проводилось изучение феномена оседания эритроцитов, для его объяснения была предложена не одна теория и указано большое количество фактов, которые могут оказывать влияние на процесс оседания. Однако и до сих пор суть этого явления остается невыясненной.

При изучении механизма реакции оседания эритроцитов можно наметить три основных вопроса:

1.Определение факторов, оказывающих влияние на оседание, и выяснение, какие из них являются определяющими этот процесс и каким, так или иначе влияющим на его течение, можно придавать второстепенное значение;

2.Выяснение путей и способов влияния вышеуказанных факторов на оседание (механизм в узком смысле этого слова);

3.Изучение причин, обуславливающих количественное содержание в крови

вещества, влияющего на оседание, или его качественное изменение. Обилие факторов, предложенных в процессе изучения и разработки во-

проса, касающегося механизма оседания эритроцитов, а также изменения взглядов на роль каждого из них на протяжении многих лет разрешения данной проблемы, повлекло за собой создание значительного числа теорий, объясняющих сущность феномена оседания эритроцитов.

Основываясь на изучении публикаций и данных экспериментальных исследований, можно предложить следующее объяснение механизма седиментации эритроцитов.

Кровь является естественной сложной дисперсной системой, включающей в себя различные вещества, находящиеся в сложном взаимодействии как между собой, так и с эритроцитами. В основе реакции оседания эритроцитов лежит явление оседания взвеси эритроцитов в плазме. Оседание суспензий является процессом, происходящим во времени; отмечая величину СОЭ, фактически учитывают степень неустойчивости взвеси эритроцитов; это происходит под влиянием лиофильных коллоидов плазмы: фибриногена, глобулинов, альбуминов, которые в естественных условиях в большем или меньшем количестве содержатся в плазме.

Центральным звеном механизма увеличения СОЭ следует считать скорость образования эритроцитарных агломератов in vitro. Если наблюдать в микроскоп за процессом оседания цитратной крови в капилляре в случае ускоренного оседания эритроцитов, можно заметить образование более или менее крупных эритроцитарных скоплений. Иногда это можно наблюдать и не-

37

вооруженным глазом, особенно при резком увеличении СОЭ. Согласно закону Стокса, скорость падения взвешенных в жидкости частиц прямо пропорциональна квадрату их радиуса. Естественно, чем быстрее происходит в капилляре агломерация эритроцитов и чем крупнее формирующиеся частицы, тем выше должна быть СОЭ.

Следует подчеркнуть, что в каждом конкретном случае СОЭ в конечном счете зависит от соотношения сил, нарушающих стабильность взвеси эритроцитов, и сил, стабилизирующих ее. Такое представление о механизме СОЭ является ключом к пониманию и правильной клинической оценке сложных и, на первый взгляд, иногда непонятных изменений оседания. Однако процесс седиментации эритроцитов отличается от простого падения свободно взвешенных в жидкости частиц и, следовательно, не полностью подчинен закону Стокса.

Основным фактором, влияющим на образование монетных столбиков из эритроцитов, является белковый состав плазмы крови. Все белковые молекулы снижают Z-потенциал эритроцитов (отрицательный заряд, обусловленный отрицательно заряженными группами сиаловых кислот на эритроцитарной мембране, который способствует взаимному отталкиванию эритроцитов и поддержанию их во взвешенном состоянии), но наибольшее влияние оказывают асимметричные молекулы— фибриноген, иммуноглобулины, а также гаптоглобин. Влияние каждого из белков на скорость оседания эритроцитов изучено экспериментально, например, показано, что ускоряющий эффект фибриногена в 33 раза выше, чем α1-глобулина, в 18 раз выше - β- глобулина и в 3 раза - α2-глобулина.

Альбумины несут на своей поверхности заряд, обволакивая эритроциты, они препятствуют склеиванию эритроцитов и предотвращают оседание их.

Глобулины имеют более высокую молекулярную массу и меньший заряд, поэтому увеличение содержания глобулинов снижает устойчивость, стабильность эритроцитов, при этом усиливаются процессы агломерации их и оседания.

Тарелли и Вестергеном была предложена формула, по которой можно рассчитать СОЭ, зная концентрацию в крови фибриногена, альбуминов и глобулинов.

СОЭ, мм/ч = 140,4 фибриноген(г%) + 62,22 глобулины(г%) – (1.36) 60,9 альбумины (г%) - 24.5.

Согласно этой формуле, особое влияние на скорость оседания оказывает содержание фибриногена.

Однако степень ускорения в конечном итоге зависит от взаимоотношения белков с учетом феномена ингибиции (торможения одними белками ускоряющего влияния на оседание эритроцитов других белков).

Обобщая данные литературы, можно выделить 2 основные группы факторов, влияющих на оседание эритроцитов:

1. Морфологические факторы.

38

Важную роль в оседании эритроцитов играют их количество в единице объема крови, форма и диаметр, а также количество гемоглобина в эритроцитах.

Сростом концентрации эритроцитов растет сопротивление движению

искорость их оседания в плазме падает. При количестве эритроцитов более

5,5 1012/л оценка СОЭ вообще невозможна. В связи с этим при малых концентрациях (например, при анемиях) скорость оседания может быть значительно повышена, в то время как агрегация выражена слабо. Поэтому предлагаются различные формулы для нормализованного показателя оседания типа:

СОЭ = 72 – 1,5 N (14 – N) или СОЭ = 42 – 7,5 N,

(1.37)

где показатель СОЭ выражен в миллиметрах за 1 час, а N – числовая концентрация эритроцитов в миллионах в одном кубическом миллиметре.

Однако при учете влияния количества эритроцитов на скорость их оседания следует учитывать также свойства той плазмы, в которой она происходит, поэтому установление прямой математической зависимости между количеством красных кровяных шариков и реакцией оседания не всегда оправдано. На показатели СОЭ также оказывают влияние форма и размер эритроцитов.

Число, форма и размер эритроцитов также влияют на оседание. Эритроцитопения ускоряет оседание, а эритроцитоз его замедляет, однако при выраженной серповидности, сфероцитозе, анизоцитозе скорость оседания эритроцитов может быть низкой, несмотря на анемию, поскольку форма клеток препятствует образованию монетных столбиков. В то же время увеличенные в объеме эритроциты (макроциты) оседают быстрее мелких (миафоцитов), это хорошо прослеживается при выраженном анизоцитозе, когда верхняя граница эритроцитарного столба в капилляре оказывается нечеткой из-за разной скорости оседания.

2. Физико-химические факторы.

На Z - потенциал и оседание эритроцитов влияют также и физикохимические факторы:

рН плазмы: сдвиг в сторону ацидоза - снижает, в сторону алкалоза - повышает СОЭ;

ионный заряд плазмы: его снижение ускоряет оседание;

содержание желчных кислот и желчных пигментов: увеличение их количества ведет к уменьшению СОЭ;

липиды крови: при увеличении содержания холестерина СОЭ увеличивается;

вязкость крови: при ее увеличении СОЭ уменьшается;

наличие антиэритроцитарных антител: изо- и аутоагглютинины, изменяя специфически эритроцитарную поверхность, способствуют их склеиванию и ускоряют оседание.

39

Ускоряющие СОЭ факторы способствуют быстрому склеиванию эритроцитов в крупные агломераты. К подобным факторам относятся субстанции, накапливающиеся в крови при инфекционных воспалительных процессах, опухолевом росте, некрозе тканей. Такими веществами являются: фибриноген, глобулин, гаптоглобин, церулоплазмин, гиалуроновая кислота, хондроитинсерная кислота, парапротеины. циркулирующие иммунные комплексы, декстраны, жировые эмульсии, пероральный прием контрацептивов, бисептола, кортизона. К факторам, ускоряющим СОЭ, относятся также беременность и анемии.

К числу факторов, препятствующих агломерации эритроцитов и, следовательно, снижающие СОЭ относят: увеличение количества эритроцитов в единице объема крови, уменьшение диаметра эритроцитов (микроцитоз) и их формы (серповидность), повышение вязкости крови, снижение температуры в рабочей комнате, сдвиг рН в кислую сторону, нарастание в крови содержания билирубина, желчных кислот, холестерина, легких полипептидных цепей (белков Бенс-Джонса), при приеме лекарственных препаратов (диуретиков, салицилатов, глюкозы, хинина).

В последние годы получены факты, свидетельствующие о связи феномена СОЭ с явлениями иммунитета. СОЭ может повышаться при агломерации эритроцитов ввиду адсорбции на их поверхности антигенов и антител.

Кроме этого, имеются основания предположить, что замедляющее звено механизма СОЭ контролируется нервной системой. Еще Э. Бернацкий отметил, что при некоторых психических заболеваниях СОЭ резко уменьшается. Отчетливое снижение СОЭ наступает после тяжелого сотрясения головного мозга. Как показали специальные исследования, уменьшение СОЭ может зависеть от ускоренного выхода из костного мозга высокозаряженных эритроцитов, что увеличивает стабильность эритроцитной взвеси. Ретикулоцитоз часто сопровождается тенденцией к снижению СОЭ. Это отмечается, например, при вдыхании углекислого газа, при лечебном применении глюкокортикоидов, введении витамина B12 у больных пернициозной анемией и т. д. Тенденция к уменьшению СОЭ, по-видимому, является одним из глубинных гематологических проявлений при острых ситуациях, что препятствует агломерирующему действию ускоряющих СОЭ субстанций.

Таким образом, оседание эритроцитов представляет собой феномен фи- зико-химического порядка. Однако, СОЭ, будучи связана со сложными коллоидными сдвигами в клетках и тканях и представляя собой один из показателей клеточной реакции, является отражением некоторых биохимических изменений в организме. В тоже время имеются данные, позволяющие считать, что эта реакция является также проявлением более глубоких биологических процессов, связанных с иммунологическим состоянием организма. На основании изложенного можно сделать вывод, что изменение СОЭ, являясь в конечном итоге функцией физико-химических изменений крови, зависит от состояния всего организма в целом, его обменных процессов и нейрогуморальной регуляции, что обуславливает принципы его клинического применения.

40

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]