Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры переделан.docx
Скачиваний:
179
Добавлен:
13.04.2015
Размер:
193.27 Кб
Скачать

30. Анализ в частотной области.

Анализ в частотной области более специфичен по сравнению с анализом во временной области. Его применяют, как правило, к объектам с линеаризуемыми математическими моделями при исследовании колебательных стационарных процессов, анализе устойчивости, расчете искажений информации, представляемой спектральными составляющими сигналов, и т.п.

Анализ в частотной области выполняется по отношению к линеаризованным моделям объектов. Для линейных систем дифференциальных туравнений справедливо применение для алгебраизации дифференциальных уравнений преобразования Фурье, в котором оператор заменяется на оператор.

Характерной особенностью получающейся систем линейных алгебраических уравнений (СЛАУ) является комплексный характер матрицы коэффициентов, что в некоторой степени усложняет процедуру решения, но не создает принципиальных трудностей. При решении задают ряд частот . Для каждой частоты решают СЛАУ и определяют действительные и мнимые части искомыхфазовых переменных. По ним определяют амплитуду и фазовый угол каждой спектральной составляющей, что и позволяет построить амплитудно-частотные, фазочастотные характеристики, найти собственные частоты колебательной системы и т.п.

31. Сравнение методов конечныx элементов и конечных разностей

Разработано много методов численного решения уравнений в частных производных. Наиболее часто используемые из них - методы конечных разностей и конечных элементов.             Метод конечных разностей был разработан раньше остальных и на первый взгляд является наиболее простым в реализации. Идея его состоит в разбиении прямоугольной сеткой области, в которой решается уравнение, и дискретизация дифференциального оператора. Решая линейную систему уравнений, находят приближенные решения в узлах решетки. Основные трудности связаны с учетом граничных условий, если граница области имеет сложную геометрическую форму.             Первые разработки метода конечных элементов (МКЭ) были выполнены в 50-х годах для решения задач сопротивления материалов. В 60-е годы математики получили строгие формулировки для этого метода, после чего он становится общим средством изучения задач в частных производных, понемногу вытесняя метод конечных разностей, который рассматривался в период своего апогея как универсальное средство решения задач такого типа. После подробного математического его исследования оказалось, что при негладких входных данных задачи МКЭ часто сходится быстрее, чем метод конечных разностей, а иногда вообще обладает оптимальной скоростью сходимости. Начиная с 1970 г. этот метод становится все более популярным среди инженеров всех специальностей благодаря работам Зинкевича, Галлагера, Одена, Лиона, Равьяра, Сильвестера.             Еще раз кратко остановимся на связях и сравнении МКЭ с методом конечных разностей, этих наиболее распространенных и эффективных численных методов. Построение конечно-разностных схем обычно требует небольшого объема вычислений, как правило, меньшего, чем в МКЭ. Однако достоинствами МКЭ являются гибкость и разнообразие сеток, стандартные приемы построения дискретных задач для произвольных областей, простота учета естественных краевых условий и т. д. Кроме того, математический анализ МКЭ является более простым, его методы применими к более широкому классу исходных задач, а оценки погрешностей приближенных решений, как правило, получаются при менее жестких ограничениях, чем в методе конечных разностей. Вместе с тем необходимо подчеркнуть, что основу для исследования МКЭ создали фундаментальные результаты, связанные с исследованием сходимости и устойчивости конечно-разностных схем, проекционных методов, обобщенных решений.