Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КП-1 исправленное.docx
Скачиваний:
62
Добавлен:
02.05.2015
Размер:
812.53 Кб
Скачать

5. Проектирование сборной колонны

5.1.Расчет прочности колонны в стадии эксплуатации

Исходные данные. Бетон тяжелый класса В20, плотность железобетона ρ = 2500 кг/м3, сечение колонн 400×400 мм, защитный слой а=а/ =40 мм, грузовая площадь для средней колонны, в соответствие с рис. 1.1, равна 6·6,6 = 39,6 м2, высота этажей Н = 4,2 м, расчетная длина колонны l0 = Н. Продольная арматура А400, поперечная арматура класса А240, сетки из проволоки В500, постоянная расчетная нагрузка от кровли с учетом веса железобетонных плит 6,0 кН/м2, расчетная погонная нагрузка от собственного веса ригеля, см. предыдущий раздел, 7,425 кН/м, расчетная нагрузка от веса 1 м2 перекрытия см. табл.1 равна 5,363 кН/м2. Временная расчетная снеговая нагрузка на кровлю по III снеговому району равна 1,8 кН/м2. Учет ответственности здания оценивается коэффициентом надежности γn = 0,95. Скорость ветра v = 4 м/сек.

  • Сбор нагрузок и определение усилий в колонне

Усилие в колонне от веса перекрытия одного этажа, с учетом коэффициента надежности по назначению здания γn = 0,95, равно

0,95·5,363·39,6 = 201,76 кН.

Усилие в колонне от веса ригеля, с учетом коэффициента надежности по назначению здания γn = 0,95, равно

0,95·7,425·6,6 = 46,55 кН.

Усилие от собственного веса колонны, с учетом коэффициента надежности по назначению здания γn = 0,95 и коэффициента надежности по нагрузке γf =1,1 и плотности железобетона ρ = 2500 кг/м3 (25кН/м3)

0,95·1,1·0,4·0,4 ·4,2·25 = 17,56 кН.

  • Суммарное усилие в колонне от веса перекрытия одного этажа

G1 = 201,76 + 46,55 + 17,56 = 265,87 кН.

Усилие в колонне:

от веса покрытия от веса плит и кровли с учетом коэффициента надежности по назначению здания γn = 0,95 составляет 0,95·6,5·39,6 = 244,53 кН,

от веса ригеля 46,55 кН, от веса стоек 17,56 кН.

Суммарное усилие в колонне от веса покрытия G2 = 244,53+ 46,55+17,56 = 308,64 кН.

Суммарное усилие в колонне от действия временной расчетной нагрузки с одного этажа, см. таб. 6. Q1 = 0,95·7,8·39,6 = 293,44 кН, в том числе от длительно-действующей части, Q1дл = 0,95·4,8·39,6 = 180,58 кН. От кратковременной части нагрузки Q1кр = 0,95·3·39,6 = 112,86 кН.

Временная расчетная нагрузка на кровлю от снега должна быть определена с учетом коэффициента снижения снеговой нагрузки за счет ветра /3/. се = (1,2 – 0,1v√ k )(0,8 – 0,002b) = (1,2 – 0,1∙4 ∙√0,8) (0,8 – 0,002 ∙19,8)= 0,71. Q2 = 0,95·3·39,6· 0,71 = 80,12 кН, в том числе

длительная Q2дл = 0,95·1,8·0,5·39,6·0,71 = 40,06 кН,

кратковременная Q2кр = 0,95·1,8·0,5·39,6·0,71 = 40,06 кН.

Расчетная продольная сила колонны первого этажа от полной нагрузки

N = (265,87 + 293,44)3 + 308,64 + 80,12 = 2066,7 кН.

Таблица 2

Продольные силы и моменты в колоннах по этажам

этажа

l0,

м

Расчетная продольная сила, кН

Момент М, кНм

Полная

Длительная

4

4,2

388,76

348,7

27,5

3

4,2

948,07

795,15

27,5

2

4,2

1507,38

1241,6

27,5

1

4,2

2066,69

1688,05

27,5


Расчетная продольная сила колонны первого этажа от постоянной и длительной нагрузки

Nдл = (265,87 + 180,58)3 + 308,64 + 40,06 = 1688,05 кН.

Аналогично вычисляются продольные силы в колоннах других этажей. При определении расчетных моментов в колонне следует иметь в виду, что изгибающий момент в стыке ригеля с колонной, учитываемый при расчете колонны, возможен при расположении временной нагрузки в одном пролете, и не может превышать значений, определяемых сечением «рыбки» (в нашем случае 55 кНм). При этом момент распределяется между верхней и нижней колонной и составляет 55/2=27,5 кНм. Эпюры продольных усилий N и изгибающих моментов М по высоте здания представлены в таблице 2 и рис.18.

    • Расчет прочности колонны 1 этажа

Исходные данные. Бетон тяжелый класса В20, Rb=11,5 МПа, сечение колонн h×b = 400×400 мм, а = а/ = 40 мм, арматура А400, Rs = 355 МПа, Еs = 20·104 МПа, N =2066,7 кН, М = 55/2 =27,5 кНм, Nдл= 1688,05кН, l0 = 0,7Н = 0,7∙4,2= 2,94м.

Величина начального эксцентриситета е0

= 1,33 см.

Вычисляем величины случайных эксцентриситетов

  • еа = l0 /600 = 2,94/600 = 0,005 м = 0,5см;

  • еа = hк/30 = 0,4/30 = 0,0133 м = 1,33 см;

  • еа = 1 см.

Поскольку эксцентриситет е0 = 1,33 см не отличается от случайного еа = 1,33 см (5,3%) расчет прочности колонны проводим как для элемента, сжатого со случайными эксцентриситетами.

Вычисляем гибкость стойки

.

Необходим учет влияния прогиба колонны на начальный эксцентриситет.

Уравнение прочности сжатого со случайными эксцентриситетами элемента

N φ(Rb∙bh0 + Rsc·A´s),

где φ = φb + 2(φsb – φb) αs, причем φ φsb,

αs = μRs /Rb.

Отношение Nдл /N = 1688,05/2066,7 = 0,817

По таблице 13 находим коэффициенты φsb и φb, в предположении, что промежуточные стержни в сечении отсутствуют; φb = 0,915 и φsb = 0,915.

Принимаем коэффициент φ = φb= 0,915.

Вычисляем необходимое количество площади арматуры

Количество арматуры, исходя из минимального коэффициента армирования μmin = 0,15%. As =A's = μminbh0= 0,0015∙40∙36 = 2,16 см2.

Предварительно принимаем арматуру 4Ø25 А400 с Аs = 19,63см2.