Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_nacheratlka_obrabotanny(1).docx
Скачиваний:
186
Добавлен:
01.06.2015
Размер:
1.18 Mб
Скачать

1. Метод проекций

ЦЕНТРАЛЬНОЕ ПРОЕЦИРОВАНИЕ

Основными видами проецирования являются центральное и параллельное. Центральное проецирование представляет собой общий случай проецирования геометрических образов из некоторого центра на плоскость.

Пусть задана плоскость П1 и кривая линия k с точками АВС (рис.1.1).

 Рис.1.1

Возьмем некоторую точку S, не лежащую в плоскости П1. Через точку S и точки АВС кривой k проведем прямые до пересечения с плоскостью П1 в точках A1B1C1. Проведя таким образом через S и каждую точку кривой k прямые, получим в плоскости П1 изображение k1кривой k.

В соответствии с описанным построением введем следующие понятия:

S - центр проекций; П1 - плоскость проекций; кривая k с точками АВС - объект проецирования;  - проецирующие лучи;A1,B1,C1 - центральные проекции точек АВСk1 - центральная проекция кривой k. Рассматривая каждую пространственную фигуру как совокупность точек, можно сказать, что проекция фигуры представляет собой множество проекций ее точек.

Свойства центрального проецирования:

1. Любая точка (кроме S) проецируется на плоскость проекций в единственную точку (рис.1).

2. Каждой точке (ABCD,...), принадлежащей какой-либо линии (кривой или прямой), соответствует проекция (A1B1C1D1, ...) этой точки на проекции данной линии (рис.1).

3. Кривая в общем случае проецируется в кривую, а прямая - в прямую. Если прямая совпадает с проецирующим лучом, например DE (рис.1), то она проецируется в точку D1 E1. Плоскость, проходящая через центр проекций, проецируется в прямую и называется проецирующей. Кривая, все точки которой принадлежат проецирующей плоскости, проецируется в прямую.

4. Точка пересечения линий проецируется в точку пересечения проекций этих линий (рис.1).

Центральное проецирование обладает большой наглядностью и применяется в строительном черчении, в архитектуре, в живописи и т.п. Недостатком центрального проецирования является сложность построения изображения предмета и определения истинных размеров. Поэтому оно имеет ограниченное применение в техническом черчении.

ПАРАЛЛЕЛЬНОЕ ПРОЕЦИРОВАНИЕ

Параллельное проецирование можно рассматривать как частный случай центрального проецирования с бесконечно удаленным центром проекций. Осуществляется оно пучком параллельных проецирующих лучей заданного направления. Пусть требуется построить параллельную проекцию кривой k на плоскость П1(рис.1.2).

 Рис. 1.2 Рис.1.3

Спроецируем в направлении s все точки кривой k на плоскость П1. Чтобы спроецировать точки указанной кривой, например АВС, нужно провести через них прямые, параллельные направлению s, до пересечения с плоскостью П1. Точки пересечения A1,B1,C1 проецирующих лучей с плоскостью П1 и будут параллельными проекциями точек АВ и С. Таким образом можно построить проекции множества точек кривой k. В зависимости от направления проецирования по отношению к плоскости проекций П1 различают два вида параллельных проекций: косоугольную, когда проецирующие лучи не перпендикулярны к плоскости П1 (рис. 1.2, кривая k), и прямоугольную (или ортогональную), когда проецирующие лучи перпендикулярны к плоскости проекций (рис.1.2, прямая а). Несмотря на то, что параллельное проецирование по сравнению с центральным дает меньшую наглядность, параллельные проекции, особенно ортогональные, обладают удобоизмеримостью и простотой построения. Поэтому ортогональное проецирование широко распространено в технике и является основным методом начертательной геометрии.

Свойства параллельного проецирования

При параллельном проецировании сохраняются все свойства центрального проецирования, а также возникают следующие новые свойства.

1. Проекции параллельных прямых параллельны между собой, т.е., если а b, то a1 b1. Пусть отрезки АВ и DE параллельны (рис. 1.3), тогда проецирующие плоскости AA1BB1 и DD1E1E будут также параллельны. Следовательно, линии A1B1 и D1E1 пересечения этих плоскостей с П1 будут параллельны.

2.Отношение отрезков, принадлежащих параллельным прямым или одной прямой, равно отношению проекций этих отрезков, т.е., если ABDE, то AB / DE =  A1B1 / D1E1

3. При параллельном перемещении плоскости проекций проекция фигуры не изменяется. Если П1П2, то A1B1C1 = A2B2C2 (рис.1.4).

Рис.1.4 Рис.1.5

Свойства ортогонального проецирования

Наряду со свойствами параллельного (косоугольного) проецирования ортогональное проецирование имеет следующие свойства.

1. Отрезок прямой в общем случае равен гипотенузе прямоугольного треугольника, у которого один катет равен его проекции на данную плоскость проекции, а второй - разности расстоянии концов отрезка до этой плоскости (рис.1.5).

2. Любой отрезок прямой и плоская фигура, параллельные плоскости проекций, проецируются на эту плоскость без искажения (рис.1.6), например, если АВ  П1, то A1B1 = AB ; ABC П1, то A1B1C1 = ABC.

Рис.1.6 Рис.1.7

3. Проекция любой фигуры (плоской фигуры, отрезка прямой и т.д.) не может быть больше самой фигуры (как следствие п. 1 и 2).

4. Ортогональные проекции двух взаимно перпендикулярных прямых, одна из которых параллельна плоскости проекций, а другая не перпендикулярна ей, взаимно перпендикулярны, т.е., если a  b, и a  П1, то a1 b1 (рис.1.7). Пусть дано a b. Построим проекцию a b на П1AA1 П1 (как проецирующий луч), следовательно, плоскость Г (AA1 b) также перпендикулярна П1. Прямая а перпендикулярна плоскости Г, так как она перпендикулярна двум прямым AA1 и b, принадлежащим плоскости Г. Но a1 a (a П1) и, следовательно, a Г, откуда A1 перпендикулярна любой прямой плоскости Г, в том числе и b1. Отсюда справедливо, что a1 b1.  Это доказательство относится как к пересекающимся прямым, так и к скрещивающимся. Как видно из чертежа, если с Г, а Г , то c1 a1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]