Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовой проект телемеханика.docx
Скачиваний:
61
Добавлен:
08.06.2015
Размер:
227.8 Кб
Скачать

Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Самарский государственный технический университет»

Факультет автоматики и информационных технологий

Кафедра «Автоматика и управление в технических системах»

Курсовой проект

по дисциплине:"Телемеханика"

на тему:"Разработка аппаратуры системы телеизмерений. Устройство КП."

Выполнила:

студентка 4-АИТ-1

РозентальА.А.

Проверил: Абросимов А.А.

Самара, 2014

Содержание:

  1. Техническое задание 3

  2. Обоснование и выбор типа системы телеизмерения 4

  3. Описание структурной схемы 9

  4. Информационный расчет цифровой системы телеизмерения 11

  5. Заключение 16

  6. Список использованных источников 17

  1. Техническое задание

1. Диапазон и единицы измерения телеметрической величины: D=0-190 кВт

2. Сигнал с датчика Dx=0–5мА

3. Максимальная частота измерения телеметрической величины:

f макс. = 0,045Гц

4. Число измерительных каналов: N=4

5. Требуемая точность телеизмерения: σ= 0,2%

6. Требуемое быстродействие системы телеизмерения: τ=75с

7. Скорость передачи информации по каналу связи: В = 650 Бод

8. Вероятность искажения в канале связи одного двоичного символа:

9. Вид интерполяции –параболическая.

  1. Обоснование и выбор типа системы телеизмерения:

Из четырёх основных телемеханических функций (телеуправление, телесигнализация, телерегулирование и телеизмерение) телеизмерение (ТИ) является наиболее сложным, что обусловлено требованием передачи информации с большой точностью. В настоящее время применяются кодоимпульсные системы телемеханики вообще и системы телеизмерений в частности, что соответствует современному состоянию теории и техники.

1.1. Виды телеизмерений

Телеизмерение — получение информации о значениях измеряемых параметров контролируемых или управляемых объектов методами и сред­ствами телемеханики.

Телеизмерение по вызову - телеизмерение по команде, посылаемой с пункта управления на контролируемый пункт и вызывающей подключение на контролируемом пункте передающих устройств, а на пункте управления — соответствующих приемных устройств.

Телеизмерение по вызову позволяет использовать одну линию связи (канал телеизмерения) для поочередного наблюдения за многими объек­тами телеизмерения. Диспетчер с помощью отдельной системы телеуправления может подключать к каналу телеизмерения желаемый объект телеизмерения. При телеизмерении по вызову можно применять автоматический опрос объектов телеизмерения циклически по заданной программе.

Телеизмерение по выбору — телеизмерение путем подключения к устройствам пункта управления соответствующих приемных приборов при постоянно подключенных передающих устройствах на контролируемых пунктах.

Телеизмерение текущих значений (ТИТ) — получение информации о значении измеряемого параметра в момент опроса устройством телемеханики.

Телеизмерение интегральных значений (ТИИ) — получение информации об интегральных значениях измеряемых величин, проинтегрированных по заданному параметру, например, времени, в месте передачи.

Телеизмерения имеют особенности, отличающие их от обычных электрических измерений, которые не могут быть применены для измерения на расстоянии вследствие возникновения погрешностей из-за изменения сопротивления линии связи при изменении параметров окружающей среды — температуры и влажности. Даже если бы указанные погрешности находились в допустимых пределах, передача большого числа показаний потребовала бы большого числа линий связи. Кроме того, в некоторых случаях (передача измерения с подвижных объектов — самолетов, ракет и.др.) обычные методы измерения принципиально не могут быть использованы. Методы телеизмерения позволяют уменьшить погрешность при передаче измеряемых величин на большие расстояния, а также многократно использовать линию связи.

Сущность телеизмерения заключается в том, что измеряемая величина, предварительно преобразованная в ток или напряжение вторичного прибора датчика, дополнительно преобразуется в сигнал, который затем передается по линии связи. Таким образом, передается не сама измеряемая величина, а эквивалентный ей сигнал, параметры которого выбирают так, чтобы искажения при передаче были минимальными. Совокупность технических средств, необходимых для осуществления телеизмерений называют системой телеизмерения (СТИ).

1.2. Обобщённая структура системы телеизмерений.

 Обобщённая структура системы ТИ приведена на рис. 1. На рисунке видно, что система ТИ представляет собой комплекс технических средств, в который входит датчик D, передатчик Прд, линия связи ЛС, приёмник Пр и индикатор И.

D – датчик; Прд – передатчик; ЛС – линия связи; Пр – приёмник; И – индикатор;

КП – контролируемый телемеханический пункт; DП – диспетчерский пункт или телемеханический пункт управления

Рисунок 1 - Обобщённая структурная системы телеизмерений.

Выходным сигналом Х датчика является стандартный сигнал, часто это сигнал постоянного тока 0 – 5мА или напряжение постоянного тока 0 – 10В. Передатчик осуществляет преобразование параметра Х в сигнал, У, который передаётся по линии связи

В линии связи информационный сигнал У искажается случайным воздействием помех и климатических условий, сигнал поступает в приёмник, где подвергается преобразованию к виду , удобному для отображения на индикаторе.

Главное требование, предъявляемое к СТИ, заключается в том, что она должна обеспечить заданную точность телеизмерения. Поэтому основной характеристикой СТИ является точность.

Точность характеризуется различными видами погрешностей, важнейшей из которых является статическая погрешность или просто погрешность.

Погрешность — степень приближения показаний индикатора к действительному значению измеряемой величины. Погрешность телеизмерения определяется как максимальная разность между показаниями индикатора на приёмной стороне и действительным значением телеизмеряемой величины, определяемым по показаниям образцового прибора.

Классы точности каналов телеизмерения должны быть установлены для устройств и комплексов при цифровом и аналоговом воспроизведении измеряемых параметров из следующего ряда: 0,15; 0,25; 0,4; 0,6; 1,0; 1,5; 2,5.

Абсолютная основная погрешность канала телеизмерения устройства (комплекса) — наибольшая разность выходной величины, приведенной ко входной в соответствии с градуировочной характеристикой, и входной величины:

Δ = y - x                                                     (1)

где Δ — абсолютная  погрешность,

y – выходная величина, приведенная ко входной в соответствии с градуировочной характеристикой,

x – входная величина.

Относительная погрешность d' — отношение абсолютной погрешности к действительному значению измеряемой величины, выраженное в процентах.

Приведенная погрешность d — отношение абсолютной погрешности к величине диапазона шкалы измерений (Xmax-Xmin):

d = Δ/(Xmax-Xmin)                         (2)

Абсолютная дополнительная погрешность канала телеизмерения устройства — наибольшая разность значений входной (выходной) величины при нормальных условиях и при воздействии влияющего фактора.

Дополнительные погрешности вызываются различными отклонениями от нормальных условий работы, например изменением температуры окружающей среды, изменением напряжения питания за допустимые пределы, появлением помех, внешних магнитных полей и т. п.

Телеизмеряемые величины должны воспроизводиться на индикаторах в абсолютных значениях измеряемых величин. Это значит, что если передаваемая величина выражается в тоннах, то, несмотря на все промежуточные преобразования этой величины, неизбежные при передаче, индикатор на приемной стороне должен быть отградуирован в тоннах. Лишь в особых случаях допускается воспроизведение телеизмерений в процентах. 

1.3. Классификация  систем телеизмерений

Системы телеизмерения (СТИ) можно классифицировать по различным признакам. Наиболее распространена классификация по параметру, с помощью которого передается значение измеряемой величины по линии связи (рис.2).

Рисунок 2 - Классификация систем телеизмерения

В системах интенсивности величина, подлежащая телеизмерению, датчиком преобразуется в сигнал постоянного тока или напряжения постоянного тока, поступает в устройство контролируемого пункта, далее передаётся по линии связи в устройство пункта управления, где отображается индикатором. Таким образом, по линии связи передаётся интенсивность сигнала постоянного тока, откуда и произошло название этого типа систем.

Система интенсивности проста по своему устройству и была в своё время первым реализованным типом систем телеизмерения. Основной недостаток систем интенсивности – низкая точность, погрешность телеизмерения систем интенсивности вследствие воздействия помех и изменения сопротивления линии связи в пределах 2—3%.

В частотных системах переменного тока сигнал постоянного тока датчика поступает в устройство контролируемого пункта, где модулируется методами частотной модуляции, далее частотно - модулированный сигнал передаётся по линии связи в устройство пункта управления, где демодулируется и измеряемая величина отображается индикатором.

Точность частотной системы переменного тока выше, чем системы интенсивности, так как частотная модуляция обладает более высокой помехоустойчивостью по сравнению с прямой передачей сигнала постоянного тока.

В частотно – импульсных системах применяется не частотная, а частотно – импульсная модуляция, по линии связи передаётся частотно – импульсный модулированный сигнал. Помехоустойчивость этого типа модуляции несколько выше по сравнению частотной модуляцией.

Во время – импульсных системах применяются время – импульсные методы модуляции, обеспечивающие чуть более высокую помехоустойчивость по сравнению с частотно – импульсной модуляцией.

В кодоимпульсных системах применяется кодоимпульсная модуляция. Сигнал постоянного тока датчика в устройстве контролируемого пункта преобразуется в кодовую комбинацию и каждый символ кодовой комбинации передаётся по линии связи в устройство пункта управления, где кодовая комбинация декодируется и отображается индикатором.

Кодоимпульсные системы обладают наибольшей точностью по сравнению с другими типами систем телеизмерения. В них не происходит уменьшение точности при передаче информационных сигналов на большие расстояния благодаря комплексу мер, применяемых для повышения помехоустойчивости телемеханической передачи. Поэтому точность кодоимпульсных систем телеизмерения определяется точностью датчика.

Принимая во внимание вышеупомянутые особенности, выбираем для контроля над рабочими параметрами цифровую систему телеизмерения с кодоимпульсным способом передачи информации.