Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_po_Biokhimii_i_molekulyarnoy_biologii.doc
Скачиваний:
1947
Добавлен:
10.06.2015
Размер:
37.27 Mб
Скачать

Регуляция ферментов ковалентной модификацией

Некоторые белки при формировании третичной структуры подвергаются постсинтетической химической модификации. Оказалось, что активность ряда ключевых ферментов обмена углеводов, в частности фосфорилазы, гликогенсинтетазы и др. также контролируется путём фосфорилирования и дефосфорилирования, осуществляемого специфическими ферментами – протеинкиназой и протеинфосфатазой, активность которых в свою очередь регулируется гормонами. Уровень активности ключевых ферментов обмена углеводов и соответственно интенсивность и направленность самих процессов обмена определяются соотношением фосфорилированных и дефосфорилированных форм этих ферментов.

Присоединение фосфорной кислоты осуществляется через ОН-группы серина, треонина, реже – тирозина. Активным ферментом оказывается или фосфорилированная, или дефосфорилированная форма, как в случае с молекулами мышечной фосфорилазы и гликогенсинтазы соответственно.

На рис. 15.7. приведена схема ковалентной модификации по типу фосфорилирование – дефосфорилирование, где символом Р обозначается остаток фосфата, Pi– неорганический фосфат (Н3РО4).

Рис. 15.7. Ковалентная модификация фермента фосфорилированием – дефосфорилированем остатков серина

Химическая постсинтетическая модификация ферментов включает, кроме того, процессы ограниченного протеолиза, метилирования, гликозилирования, уридилирования, аденилирования, АDP-рибозилирования и др., обеспечивая тем самым микроскопический тип регуляции активности ферментов и соответственно физиологическую скорость процессов обмена веществ.

Регуляция ферментов ограниченным протеолизом (активация зимогенов)

Протеолитические ферменты пищеварительного тракта, а также поджелудочной железы синтезируются в неактивной форме – в виде проферментов (зимогенов). Регуляция в этих случаях сводится к превращению проферментов в активные ферменты под влиянием специфических агентов или других ферментов – протеиназ. Так, трипсин в поджелудочной железе синтезируется в форме неактивного трипсиногена. Поступив в кишечник, он превращается в активный трипсин в результате аутокатализа или под действием других протеиназ. Превращение неактивного пепсиногена в активный пепсин происходит аутокаталитически в результате специфического ограниченного протеолиза в присутствии соляной кислоты и также связано с отщеплением от профермента специфического ингибитора пептидной природы. Эти превращения зимогенов в активные ферменты связаны с конформационными изменениями молекулы фермента и формированием активного центра или его раскрытием (демаскирование). Синтез протеиназ в неактивной форме и ряда других неактивных белков-предшественников имеет, очевидно, определенный биологический смысл, предотвращая разрушение клеток органов, в которых образуются проферменты. Примерами подобного активирования белков является активирование некоторых гормонов (проинсулин → инсулин), белка соединительной ткани (растворимый проколлаген → в нерастворимый коллаген), белков свертывающей системы крови.