Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции-3 модуль динамика.doc
Скачиваний:
277
Добавлен:
10.06.2015
Размер:
2.53 Mб
Скачать

Лекция 13 общие теоремы динамики механической системы

При большом количестве материальных точек, входящих в состав механической системы, или, если в её состав входят абсолютно твёрдые тела (), совершающие непоступательное движение, применение системы дифференциальных уравнений движения при решении основной задачи динамики механической системы оказывается практически неосуществимым. Однако при решении многих инженерных задач нет необходимости в определении движения каждой точки механической системы в отдельности. Иногда бывает достаточно сделать выводы о наиболее важных сторонах изучаемого процесса движения, не решая полностью систему уравнений движения. Эти выводы из дифференциальных уравнений движения механической системы составляют содержание общих теорем динамики. Общие теоремы, во-первых, освобождают от необходимости в каждом отдельном случае производить те математические преобразования, которые являются общими для разных задач и их раз и навсегда производят при выводе теорем из дифференциальных уравнений движения. Во-вторых, общие теоремы дают связь между общими агрегированными характеристиками движения механической системы, имеющими наглядный физический смысл. Эти общие характеристики, такие как количество движения, кинетический момент, кинетическая энергия механической системы называютсямерами движения механической системы.

Первая мера движения – количество движения механической системы

z

Mk

O

y

x

Рис. 13.1

Пусть дана механическая система, состоящая из материальных точек.Положение каждой точки массойопределяется в инерциальной системе отсчётарадиус-вектором(рис. 13.1). Пусть - скорость точки.

Количеством движения материальной точки называется векторная мера её движения, равная произведению массы точки на её скорость:

.

Количеством движения механической системы называется векторная мера её движения, равная сумме количеств движения её точек:

, (13.1)

или в проекциях на оси координат

.

Преобразуем правую часть формулы (23.1):

,

где - масса всей системы,- скорость центра масс.

Следовательно, количество движения механической системы равно количеству движения её центра масс, если сосредоточить в нём всю массу системы:

.

Пример:

Рис. 13.2

Количество движения колеса массой М, катящегося без скольжения по горизонтальной плоскости со скоростью (скорость оси колеса) (рис. 13.2) равно

,

так как скорость центра масс колеса совпадает со скоростью оси колеса.

Импульс силы

Произведение силы на элементарный промежуток времени её действия называется элементарным импульсом силы.

Импульсом силы за промежуток времени [0,t] называется интеграл от элементарного импульса силы

.

Теорема об изменении количества движения механической системы

Пусть на каждую точку механической системы действуют равнодействующая внешних сили равнодействующая внутренних сил.

Рассмотрим основные уравнения динамики механической системы

(13.2)

Складывая почленно уравнения (13.2) для n точек системы, получим

(13.3)

Первая сумма в правой части равна главному вектору внешних сил системы. Вторая сумма равна нулю по свойству внутренних сил системы. Рассмотрим левую часть равенства (13.3):

.

Таким образом, получим:

, (13.4)

или в проекциях на оси координат

(13.5)

Равенства (13.4) и (13.5) выражают теорему об изменении количества движения механической системы:

Производная по времени от количества движения механической системы равна главному вектору всех внешних сил механической системы.

Эту теорему можно представить также в интегральной форме, проинтегрировав обе части равенства (13.4) по времени в пределах от t0 до t:

, (13.6)

где , а интеграл в правой части – импульс внешних сил за

время t-t0.

Равенство (13.6) представляет теорему в интегральной форме:

Приращение количества движения механической системы за конечное время равно импульсу внешних сил за это время.

Теорему называют также теоремой импульсов.

В проекциях на оси координат, теорема запишется в виде:

.

Следствия (законы сохранения количества движения)

1). Если главный вектор внешних сил за рассматриваемый промежуток времени равен нулю, то количество движения механической системы постоянно, т.е. если ,.

2). Если проекция главного вектора внешних сил на какую-либо ось за рассматриваемый промежуток времени равна нулю, то проекция количества движения механической системы на эту ось постоянна,

т.е. если то.