Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема 4.doc
Скачиваний:
269
Добавлен:
20.02.2016
Размер:
637.44 Кб
Скачать

4.3. Моменты инерции простых фигур

Как уже отмечалось выше, к числу простых плоских фигур относятся три фигуры: прямоугольник, треугольник и круг. Простыми эти фигуры считаются потому, что положение центра тяжести этих фигур заранее известно. Все остальные фигуры могут быть составлены из этих простых фигур и считаются сложными. Вычислим осевые моменты инерции простых фигур относительно их центральных осей.

1. Прямоугольник.Рассмотрим сечение прямоугольного профиля размерами(Рис.4.6). Выделим элемент сечения двумя бесконечно близко расположенными сечениями на расстоянииот центральной оси.

Рис.4.6

Вычислим момент инерции прямоугольного сечения относительно оси :

. (4.10)

Момент инерции прямоугольного сечения относительно оси найдем аналогично. Здесь вывод не приводится.

. (4.11)

Центробежный момент инерции относительно осей иравен нулю, так как осииявляются осями симметрии, а, следовательно, главными осями.

2. Равнобедренный треугольник.Рассмотрим сечение треугольного профиля размерами(Рис.4.7). Выделим элемент сечения двумя бесконечно близко расположенными сечениями на расстоянииот центральной оси. Центр тяжести треугольника находится на расстояниот основания. Треугольник принимается равнобедренным, так что осьсечения является осью симметрии.

Рис.4.7

Вычислим момент инерции сечения относительно оси :

. (4.12)

Величину определим из подобия треугольников:

; откуда .

Подставляя выражения для в (4.12) и интегрируя, получим:

. (4.13)

Момент инерции для равнобедренного треугольника относительно оси находится аналогичным образом и равен:

(4.14)

Центробежный момент инерции относительно осей иравен нулю, так как осьявляется осью симметрии сечения.

3. Круг. Рассмотрим сечение круглого профиля диаметром(Рис.4.8). Выделим элемент сечения двумя бесконечно близко расположенными концентрическими окружностями, расположенными на расстоянииот центра тяжести круга.

Рис.4.8

Вычислим полярный момент инерции круга, воспользовавшись выражением (4.5):

. (4.15)

Используя условие инвариантности для суммы осевых моментов инерции относительно двух взаимно перпендикулярных осей (4.6) и учитывая, что для круга в силу симметрии , определяем величину осевых моментов инерции:

. (4.16)

Откуда:

. (4.17)

Центробежный момент инерции относительно осей иравен нулю, так как осииявляются осями симметрии сечения.

4.4. Зависимости между моментами инерции относительно параллельных осей

При вычислении моментов инерции для сложных фигур следует запомнить одно правило: значения для моментов инерции можно складывать, если они вычислены относительно одной и той же оси. Для сложных фигур чаще всего центры тяжести отдельных простых фигур и всей фигуры не совпадают. Не совпадают, соответственно, и центральные оси для отдельных простых фигур и всей фигуры. В связи с этим существуют приемы приведения моментов инерции к одной оси, например, центральной оси всей фигуры. Это может быть связано с параллельным переносом осей инерции и дополнительными вычислениями.

Рассмотрим определение моментов инерции относительно параллельных осей инерции, изображенных на рис.4.9.

Рис.4.9

Пусть осевые и центробежный моменты инерции изображенной на рис.4.9. фигуры относительно произвольно выбранных осей ис началом координат в точкеизвестны. Требуется вычислить осевые и центробежный моменты инерции фигуры относительно произвольных параллельных осейис началом координат в точке. Осиипроведены на расстоянияхисоответственно от осейи.

Воспользуемся выражениями для осевых моментов инерции (4.4) и для центробежного момента инерции (4.7). Подставим в эти выражения вместо текущих координат иэлемента с бесконечно малой площадью координатыив новой системе координат. Получим:

. (4.18)

. (4.19)

.

(4.20)

Анализируя полученные выражения, приходим к выводу, что при вычислении моментов инерции относительно параллельных осей к моментам инерции, вычисленных относительно исходных осей инерции, следует призводить добавки в виде дополнительных членов, которые могут оказаться намного больше значений для моментов инерции относительно исходных осей. Поэтому пренебрегать этими дополнительными членами ни в коем случае нельзя.

Рассмотренный случай представляет собой самый общий случай параллельного переноса осей, когда в качестве исходных были взяты произвольные оси инерции. В большинстве расчетов встречаются частные случаи определения моментов инерции.

Первый частный случай. Исходные оси являются центральными осями инерции фигуры. Тогда, используя основное свойство для статического момента площади, можно исключить из уравнений (4.18)(4.20) члены уравнений, в которые входит статический момент площади фигуры. В результате получим:

. (4.21)

. (4.22)

. (4.23)

Здесь оси ицентральные оси инерции.

Второй частный случай. Исходные оси являются главными осями инерции. Тогда, учитывая, что относительно главных осей инерции центробежный момент инерции равен нулю, получим:

. (4.24)

. (4.25)

. (4.26)

Здесь оси иглавные оси инерции.

Воспользуемся полученными выражениями и рассмотрим несколько примеров вычисления моментов инерции для плоских фигур.

Пример 4.2.Определить осевые моменты инерции фигуры, приведенной на рис. 4.10, относительно центральных осейи.

Рис.4.10

Решение:

В предыдущем примере 4.1 для изображенной на рис.4.10 фигуры было определено положение центра тяжести С. Координата центра тяжести откладывалась от оси и составила. Вычислим расстоянияимежду осямиии осямии. Эти расстояния составили соответственнои. Так как исходные осииявляются центральными осями для простых фигур в виде прямоугольников, для определения момента инерции фигуры относительно осивоспользуемся выводами для первого частного случая, в частности, формулой (4.21).

см4.

Момент инерции относительно оси получим путем сложения моментов инерции простых фигур относительно этой же оси, так как осьявляется общей центральной осью для простых фигур и для всей фигуры.

см4.

Центробежный момент инерции относительно осей иравен нулю, так как ось инерцииявляется главной осью (осью симметрии фигуры).

Пример 4.3. Чему равен размер b (в см) фигуры, изображенной на рис. 4.11, если момент инерции фигуры относительно оси равен 1000 см4?

Рис.4.11

Решение:

Выразим момент инерции относительно оси через неизвестный размер сечения, воспользовавшись формулой (4.21), учитывая, что расстояние между осямииравно 7см:

см4. (а)

Решая выражение (а) относительно размера сечения , получим:

см.

Пример.4.4. Какая из фигур, изображенных на рис.4.12 , имеет больший момент инерции относительно оси , если обе фигуры имеют одинаковую площадьсм2?

Рис.4.12

Решение:

1. Выразим площади фигур через их размеры и определим:

а) диаметр сечения для круглого сечения:

см2; Откудасм.

б) размер стороны квадрата:

; Откудасм.

2. Вычисляем момент инерции для круглого сечения:

см4.

3. Вычисляем момент инерции для сечения квадратной формы:

см4.

Сравнивая полученные результаты, приходим к выводу, что наибольшим моментом инерции будет обладать сечение квадратной формы по сравнению с сечение круглой формы при одинаковой у них площади.

Пример 4.5.Определить полярный момент инерции (в см4) сечения прямоугольной формы относительно его центра тяжести, если ширина сечения см, высота сечениясм.

Решение:

1. Найдем моменты инерции сечения относительно горизонтальной и вертикальнойцентральных осей инерции:

см4;см4.

2. Определяем полярный момент инерции сечения как сумму осевых моментов инерции:

см4.

Пример 4.6. Определить момент инерции фигуры треугольной формы изображенной на рис.4.13, относительно центральной оси , если момент инерции фигуры относительно осиравен 2400 см4.

Рис.4.13

Решение:

Момент инерции сечения треугольной формы относительно главной оси инерции будет меньше по сравнению с моментом инерции относительно осина величину. Поэтому присм момент инерции сечения относительно осинайдем следующим образом:

см4.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]