Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Quantum-Mechanical Prediction of Thermochemical Data.pdf
Скачиваний:
68
Добавлен:
08.01.2014
Размер:
13.22 Mб
Скачать

Complete Basis Set Models

127

site of this enzyme. It is hard to imagine a more striking vindication of our assumption that enzymes function by reducing the energies of transition states. The mysterious ways of nature are truly beautiful

[70].

9.SUMMARY

Pair natural orbital extrapolations to the complete basis set limit provide the foundation for a sequence of cost-effective CBS models. The current models: CBS-QCI/APNO, CBS-QB3, and CBS-4M, are applicable to species with 5, 10, and 20 non-hydrogen atoms, and are reliable to ca. 0.5, 1.0, and 2.0 kcal/mol respectively. These methods are applicable to transition states for chemical reactions with the IRCMax procedure. The ZC-VTST CBS-QCI/APNO model is capable of quantitative predictions of absolute rate constants. A double extrapolation promises a new generation of significantly more accurate and reliable models that will no longer require empirical corrections. The isomerasecatalyzed conversion of to provided a case study for the extension of such high-accuracy methods to enzyme kinetics. The impact that high-accuracy computational quantum chemistry is currently having on combustion chemistry will soon be extended to biology. This is an exciting time for computational science.

ACKNOWLEDGEMENTS

The author is grateful to the U. S. Department of Energy and Gaussian, Inc. for the continuing support of this research and recognizes the very important contributions of his many collaborators including: Marc R. Nyden, Mohammad A. Al-Laham, Joseph W. Ochterski, John A. Montgomery, Jr., David K. Malick, Michael J. Frisch, and Rex F. Pratt.

REFERENCES

1.G.A. Petersson, Theor. Chem. Acc. 103, 190 (2000).

2.K. K. Irikura and D. J. Frurip (Ed.), Computational Thermochemistry, ACS Symposium Series 677, American Chemical Society, Washington, D. C. (1998).

3.R. J. Bartlett and G. D. Purvis, Int. J. Quant. Chem. 14, 516 (1978); G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

128

Chapter 4

4.J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987); K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).

5.J. M. L. Martin and G. de Olivera, J. Chem. Phys. 111, 1843 (1999).

6.C. Schwartz, Phys. Rev. 126, 1015 (1962).

7.C. Schwartz, in Methods in Computational Physics, Vol.2, B. Alder, S. Fernbach,

M.Rotenberg (Eds.), Academic, New York (1963).

8.M. R. Nyden and G. A. Petersson, J. Chem. Phys. 75, 1843 (1981).

9.G. A. Petersson and M. R. Nyden, J. Chem. Phys. 75, 3423 (1981).

10.G.A. Petersson and S. L. Licht, J. Chem. Phys. 75, 4556 (1981).

11.F. B. Brown and D. G. Truhlar, Chem. Phys. Lett. 117, 307 (1985).

12.T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

13.P. E. M. Siegbahn, M. R. A. Blomberg, and M. Svensson, Chem. Phys. Lett. 223, 35 (1994).

14.P. O. Löwdin, Phys. Rev. 97, 1474 (1955).

15.F. W. Byron, Jr., and C. J. Joachain, Phys Rev. 146, 1 (1966).

16.F. W. Byron, Jr., and C. J. Joachain, Phys Rev. 157, 7 (1967).

17.C. Møller and M. S. Plesset, Phys Rev. 46, 618 (1934).

18.C. F. Bunge, Theor. Chim. Acta (Berlin) 16, 126 (1970).

19.K. Jankowski and P. Malinowski, Chem. Phys. Lett. 54, 68 (1978); K. Jankowski,

P.Malinowski, and M. Polasik, J. Phys. B 12, 3157 (1979); K. Jankowski, and

P.Malinowski, Phys. Rev. A 21, 45 (1980); K. Jankowski, P. Malinowski, and

M.Polasik, Phys. Rev. A 21, 51 (1980).

20.J. W. Ochterski, G. A. Petersson, and J. A. Montgomery, Jr., J. Chem. Phys. 104, 2598 (1996).

21.G. A. Petersson and M. Braunstein, J. Chem. Phys. 83, 5129 (1985).

22.J. A. Montgomery, Jr., J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 101, 5900 (1994).

23.J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 110, 2822 (1999).

24.J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys. 112, 6532 (2000).

25.Gaussian 98, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.

A.Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E.

Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, A. G. Baboul, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA,

1998.

Complete Basis Set Models

129

26.Improvements in hardware and software now make QCISD/6-311G** frequencies practical for the CBS-QCI/APNO model.

27.L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, J. Chem. Phys. 93, 2537 (1990).

28.P. Pulay, in Applications of Electronic Structure Theory, H. F. Schaefer, III (Ed.), Plenum, New York (1977), p. 153.

29.J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quant. Chem. Symp. 13, 325 (1979).

30.H. B. Schlegel, J. Comput. Chem. 3, 214 (1982).

31.N. C. Handy and H. F. Schaefer, III, J. Chem. Phys. 81, 5031 (1984).

32.H. B. Schlegel, J. S. Binkley, and J. A. Pople, J. Chem. Phys. 80, 1976 (1984).

33.M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275; (1990); M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 281 (1990)

34.B. G. Johnson and M. J. Frisch, J. Chem. Phys. 100, 7429 (1994).

35.M. Head-Gordon and T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994).

36.C. Peng and H. B. Schlegel, Israel J. Chem. 33, 449 (1994).

37.D. G. Truhlar and A. Kuppermann, J. Am. Chem. Soc. 93, 1840 (1971).

38.C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 90, 2154 (1989).

39.J. C. Corchado, E J. Olivares del Valle, and J. Espinosa-Garcia, J. Phys. Chem. 97, 9129 (1993).

40.D. K. Malick, G. A. Petersson, and J. A. Montgomery, Jr., J. Chem. Phys. 108, 5704 (1998).

41.J. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian, Inc., Pittsburgh, PA (1996).

42.D. G. Truhlar, J. Chem. Phys. 53, 2041 (1970).

43.B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 83, 1052 (1979); B. C. Garrett and D. G. Truhlar, J. Phys. Chem. 83, 1079 (1979).

44.NIST Chemical Kinetics Database, Version 6.0 (1998).

45.W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985); W. Klopper and W. Kutzelnigg, Chem. Phys. Lett. 134, 17 (1987); W. Klopper and W. Kutzelnigg, Stud. Phys. Theor. Chem. 62, 45 (1989).

46.J. Noga, W. Klopper, and W. Kutzelnigg, in Recent Advances in Coupled Cluster Methods R. J. Bartlett (Ed.), World Scientific, Singapore (1997), p. 1.

47.W. Klopper, in The Encyclopedia of Computational Chemistry, P. v. R. Schleyer, et al. (Eds.), Wiley, Chichester, (1998), p. 2351.

48.W. Klopper, K. L. Bak, P. Jørgensen, J. Olsen, and T. Helgaker, J. Phys. B 32, R103 (1999).

49.R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992); D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 98, 1358 (1993); D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994); D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995); A. K. Wilson, T. van Mourik, and T. H. Dunning, Jr., J. Mol. Struct. (Theochem) 338, 339 (1996);

130

Chapter 4

D.E. Woon, K. A. Peterson, and T. H. Dunning, Jr., J. Chem. Phys. 109, 2233 (1998).

50.G. A. Petersson and M. J. Frisch, J. Phys. Chem. 104, 2183 (2000).

51.D. Feller, J. Chem. Phys. 96, 6104; D. Feller, J. Chem. Phys. 98, 7059 (1993).

52.K. A. Peterson, D. E. Woon, and T. H. Dunning, Jr., J. Chem. Phys. 100, 7410 (1994).

53.A. K. Wilson and T.H. Dunning, Jr., J. Chem. Phys. 106, 8718 (1997).

54.F. B. van Duijneveldt, IBM Publ. RI 945, Yorktown Hts., New York (1971).

55.J. M. L. Martin, Theor. Chem. Acc. 97, 227 (1997).

56.M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma, J. Phys. Chem. 100, 19357 (1996).

57.T. Vreven and K. Morokuma, J. Chem. Phys. 113, 2969 (2000).

58.M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett. 255, 327 (1996).

59.V. Barone, M. Cossi, and J. Tomasi, J. Chem. Phys. 107, 3210 (1997).

60.V. Barone, M. Cossi, and J. Tomasi, J. Comp. Chem. 19, 404 (1998).

61.T. C. Eames, D. C. Hawkinson, and R. M. Pollack, J. Am. Chem. Soc. 112, 1996 (1990).

62.L. Xue, A Kuliopulos, A. S. Mildvan, and P. Talalay, Biochemistry 30, 4991 (1991).

63.C. M. Holman and W. F. Bebisek, Biochemistry 33, 2672 (1994).

64.G. Choi, N. C. Ha, S. W. Kim, D. H. Kim, S. Park, B. H. Oh, and K. Y. Choi,

Biochemistry 39, 903 (2000).

65.A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff,

J.Am. Chem. Soc. 114, 10024 (1992).

66.A. K. Rappé and W. A. Goddard III, J. Phys. Chem. 95, 3358 (1991).

67.C. Peng and H. B. Schlegel, Israel J. Chem. 33, 449 (1994).

68.K. Oh, S. Cha, D. Kim, H. Cho, N. Ha, G. Choi, J. Lee, P. Tarakeshwar, H. Son, K. Choi, B. Oh, and K. Kim, Biochemistry 39, 13891 (2000).

69.J. M. Schwab and B. S. Henderson, Chem. Rev. 90, 1203 (1990).

70.”The most beautiful thing we can experience is the mysterious. It is the source of all true art and science.” Albert Einstein in The Expanded Quotable Einstein, collected and edited by A. Calaprice, Princeton Univ. Press, Princeton, N. J. (2000).

Соседние файлы в предмете Химия