Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ЭЛЕКТРОННЫЙ КОНСПЕКТ ЛЕКЦИЙ

.pdf
Скачиваний:
88
Добавлен:
24.04.2017
Размер:
3.25 Mб
Скачать

211

организма на глубину 1–2 см. Проникающая способность -излучения, которое распространяется со скоростью света, а также потока нейтронов очень велика: задерживаются только свинцовой, бетонной плитами.

Процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид радионуклидом.

Число распадов в секунду в радиоактивном источнике называется активностью.

Единица измерения радиоактивности беккерель (Бк,Bq): 1 Бк = одному распаду в секунду. Время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике, называется периодом полураспада.

Уменьшение концентрации радионуклидов в биологическом организме в два раза называется

периодом полувыведения.

К примеру, на территории Республики Беларусь в результате аварии на ЧАЭС с осадками выпали следующие радионуклиды с периодами полураспада и полувыведения:

йод-131 (- и -) – 8 и 138 дней соответственно,25% всех выбросов; цезий-137 (- и -) – 30 лет и 100 дней соответственно, 21%; стронций-90 ( -) – 29 и 20 лет соответственно, 10%; плутоний-239 ( -, - меньше) – 24065 и 20 лет соответственно, 2%территории; америций241( -,-больше)432 года; «горячие частицы», являющиеся результатом аэрозольного распыления ядерного топлива в 1-сантиметровом слое почвы. Это частицы с высокой концентрацией радионуклидов с различными видами излучений – очень опасны!

***Безопасной для проживания и использования территория становится по

истечении примерно 10 периодов полураспада.

Дозиметрия.

Ионизирующее радиационное излучение при взаимодействии с воздухом, водой,

другими веществами, с биологической тканью живых организмов теряет свою энергию,

вызывая возбуждение атомов и молекул, их ионизацию.

Дозой облучения называется часть энергии радиационного излучения, которая расходуется на возбуждение и ионизацию атомов и молекул любого облученного объекта.

Дозиметрией называется измерение дозы или мощности радиационного излучения (т. е. дозы в единицу времени).

Различают следующие дозы радиационного облучения:

Поглощенная доза – это количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма). Единицей СИ поглощенной дозы является Дж/кг со специальным наименованием грэй (Гр, Gy): 1 Гр = 1 Дж/кг. В качестве внесистемной

(традиционной) единицы используется рад, равный 0,01 Гр. Для мягких тканей человека в поле рентгеновского или гамма-излучения поглощенная доза в 1 рад примерно соответствует экспозиционной в 1 Р (точнее, 1 Р = 0,93 рад).

Однако, величина поглощенной дозы не учитывает, что при одинаковой полученной дозе

-излучение гораздо опаснее β- или γ-излучений (при внутреннем облучении -излучение в

20 раз опаснее других видов излучений). Если дозу умножить на коэффициент, отражающий способность излучения повреждать ткани организма, получим пересчитанную

эквивалентную дозу облучения. Ее измеряют в в зивертах (Зв, Sv) – один зиверт соответствует поглощенной дозе в 1 Дж/кг (для рентгеновского, γ- и β-излучений).

Внесистемная единица – бэр, он равен 0,01 Зв. Эквивалентная доза является мерой оценки ущерба здоровью человека при действии ИИ.

Эффективная эквивалентная доза – это эквивалентная доза, умноженная на коэффициент, учитывающий различную чувствительность разных тканей к облучению. Существуют коэффициенты радиационного риска для разных тканей человека при

211

212

равномерном облучении всего тела: 0,12 – костный мозг и легкие; 0,03 – костная ткань и щитовидная железа; 0,05 – молочная железа; 0,20 – половые железы; 0,05 – другие ткани.

Эффективная эквивалентная доза отражает суммарный эффект облучения для организма и также измеряется в зивертах.

Эти понятия описывают только индивидуально получаемые дозы. Просуммировав индивидуальные эффективные эквивалентные дозы, полученные группой людей, мы придем к коллективной эффективной дозе в человеко-зивертах (чел.-Зв).

Для измерения рентген- и γ-излучений используется экспозиционная доза – это общий электрический заряд ионов одного знака в воздухе за время облучения. Единицей

экспозиционной дозы в системе СИ является кулон/кг (Кл/кг, C/kg), внесистемной – рентген (Р, R).

Часто пользуются понятием мощность экспозиционной дозы. Это величина выражается в мР/ч или мкР/ч. Обычные фоновые показатели мощности экспозиционной дозы для

Беларуси – до 18–20 мкР/ч.

Биологическое действие ИИ.

Этапы повреждающего действия ИИ на уровне организма: физический, физико-

химический, химический, этап биомолекулярных повреждений (клетка!), и в конечном итоге

биологических повреждений и физиологических эффектов.

ИИпри взаимодействии с биологической тканью живых организмов теряют свою энергию, вызывая возбуждение и ионизацию атомов и молекул – т.е. преобразование нейтральных атомов и молекул в ионы различных знаков. Выделяют прямое и косвенное (радиолиз воды) воздействие ИИ на биологическую ткань. Прямое действие ИИ приводит к появлению свободных радикалов, которые вовлекаются в сложную цепь химических реакций. В результате образуются новые молекулы, не свойственные организму и токсичные для него (радиотоксины). Отмечается повреждения и денатурация белковых молекул в клетках и тканях, особой чувствительностью к ИИ обладают хромосомы ядер и цитоплазма. Косвенное действии ИИ проявляет свои повреждающие свойства через ионизацию молекул воды (75% воды в организме и около 50% ИИ поглощается водой), что вторично вызывает повреждения ферментных систем организма, нарушение синтеза ДНК и РНК – в результате нарушается структура хромосом и генетической системы в целом.

В конечном итоге, на этапе биологических нарушений происходит повреждение и гибель клеток, замедляются процессы их деления и обновления, идут процессы трансформации поврежденных клеток в злокачественные, индуцирующие онкологические процессы. Радиотоксины приводят к нарушениям обмена веществ, нервной и эндокринной регуляции, к генетическим мутациям (влияние на потомство облученных).

Процессы репарации (восстановления). Полученные лучевые повреждения не являются обязательно окончательным и необратимыми. Как на химическом, так и на биологическом этапах параллельно с процессами повреждения структур и функций организма идут и обратные процессы восстановления исходного состояния – процессы репарации (в организме облученных в среднем регенерируется до 3% повреждений в сутки;

только 10% повреждений считаются необратимыми).

Все повреждающие эффекты ИИ подразделяют на соматические («сома» - тело),

связанные с непосредственным облучением человека; и генетические, наблюдающиеся у потомства в следующих и последующих поколениях (это генные мутации и хромосомные аберрации у облученных, что приводит к наследственным заболеваниям, измененному потомству). Соматические эффекты подразделяют на ранние (лучевые ожоги, ОЛБ, ХЛБ,

212

213

поражения отдельных органов) и поздние (являются последствиями облучения и проявляются через несколько месяцев и лет – опухоли, катаракта, цирроз печени).

Различают также соматические:

*детерминированные эффекты (зависимые от дозы облучения), когда имеет место превышение числа погибших клеток над числом образующихся (ОЛБ, ХЛБ, лучевые ожоги, нарушение репродуктивной функции, катаракта).

*стохастические эффекты облучения (вероятностные, могут возникать при любых дозах облучения), когда облученная клетка не гибнет, а только изменяется (лейкозы, др. онкологические процессы); с повышением дозы ИИ увеличивается не тяжесть, а вероятность возникновения этих эффектов увеличивается.

Степень воздействия ИИ на живой организм определяется:

поглощенной дозой излучения и ее распределением во времени (продолжительностью воздействия ИИ);

видом радионуклида, попавшего внутрь организма;

физиологическим (например, сон, бодрствование, усталость, беременность) или патофизиологическим состоянием организма (например, хронические заболевания, ожоги, механические травмы);

полом (более радиочувствительны мужчины);

возрастом (наименее чувствительны люди зрелого возраста).

радиочувствительностью тканей, органов и систем, непосредственно подвергающихся облучению; индивидуальной радиочувствительностью (в человеческой популяции 10–12 % людей отличаются повышенной радиочувствительностью);

Радиочувствительность – это чувствительность биологических объектов к

воздействию ИИ. Различные виды организмов существенно различаются по радиочувствительности: чем сложнее организм, тем он более чувствителен к действию ИИ. На клеточном уровне радиочувствительность зависит от организации генома, состояния системы ДНК, содержания в клетке антиоксидантов и пр.. На тканевом уровне выполняется

правило БергоньеТрибондо: радиочувствительность ткани прямо пропорциональна еѐ пролиферативной активности и обратно пропорциональна степени дифференцировки составляющих ее клеток. Следовательно, наиболее радиочувствительными в организме будут интенсивно делящиеся, быстро растущие и мало специализированные ткани, например, кроветворные клетки костного мозга, эпителий тонкого кишечника и кожи. Наименее радиочувствительными будут специализированные слабо обновляющиеся ткани, например, мышечная, костная, нервная.

В то же время ткани, резистентные к непосредственному действию ИИ оказываются весьма уязвимыми в отношении отдаленных последствий облучения.

Большинство тканей взрослого человека относительно мало чувствительны к действию радиации. Почки выдерживают суммарную дозу около 23 Гр, печень –40, мочевой пузырь – по меньшей мере 55 Гр за месяц, хрящевая ткань – до 70 Гр.

При облучении ведущим для организма является поражение одного или нескольких критических органов. В зависимости от критического органа выделяют три радиацион-

ных синдрома:

1. Костно-мозговой синдром развивается при облучении в диапазоне доз 1–10 Гр. Средняя продолжительность жизни при нем не более 40 суток. На первый план выступают нарушения кроветворения, связанные с повреждением главным образом стволовых клеток и массовой гибелью делящихся клеток крови.

2. Желудочно-кишечный синдром развивается при облучении в диапазоне доз 10–80 Гр. Средняя продолжительность жизни составляет около 8 суток, ведущим является поражение

213

214

тонкого кишечника. Синдром включает нарушение секреторной, моторной функции кишечника, нарушение баланса жидкости и электролитов, инфекционные процессы, поражение кровеносных сосудов и пр.

3.Церебральный синдром развивается при облучении в дозе более 80 Гр. Продолжительность жизни составляет менее 2 суток, развиваются необратимые изменения в ЦНС. Гибель нервных клеток происходит только при огромных дозах порядка сотен Гр. В летальном исходе важную роль играет поражение кровеносных сосудов с быстрым развитием отека мозга.

Острая лучевая болезнь (ОЛБ)

Острая лучевая болезнь при однократном внешнем равномерном облучении наиболее типичный пример радиационного поражения человека. Пороговая доза для проявления ОЛБ 1 Гр.

Многообразие проявлений зависит от ряда факторов: вид облучения – местное или общее, внешнее или внутреннее; равномерное или неравномерное; время облучения – однократное, хроническое; объем и локализация облученного участка. При внешнем однократном облучении и дозе 0,25 Гр не отмечается заметных нарушений здоровья облученных. Облучение в дозе от 0,25 до 0,5 Гр может вызывать незначительные временные отклонения в составе крови; при облучении от 0,5 до 1 Гр возникает «лучевая травма» – возникают симптомы нарушения вегетативной НС и незначительное снижение количества тромбоцитов и лейкоцитов в крови.

Выделяют четыре основные клинические формы ОЛБ:

1.Костно-мозговая (доза 1–10 Гр).

2.Кишечная (доза 10–20 Гр).

3.Токсемическая (доза 20–80 Гр).

4.Церебральная (доза более 80 Гр).

Взависимости от поглощенной дозы костно-мозговая форма ОЛБ может быть :

I (легкой) – 1–2 Гр;

II (средней тяжести) – 2–4 Гр; III (тяжелой) – 4–6 Гр

IV (крайне тяжелой) – 6–10 Гр;

В течении ОЛБ выделяют 4 основных фазы: фаза первичной острой реакции; фаза мнимого благополучия; фаза разгара болезни; фаза раннего восстановления. И далее – период последствий ОЛБ.

1. Фаза первичной острой реакции. Продолжительность фазы – от нескольких часов до 3 суток. Симптомы первичной реакции могут появиться в первые минуты и часы после облучения:

-диспептические – тошнота, рвота, потеря аппетита, диарея;

-общеклинические – головная боль, головокружение, слабость, нарушение сознания, изменение двигательной активности, повышение температуры тела;

-местные – изменение кожи и слизистых оболочек в местах наибольшего облучения (преходящая гиперемия).

Наибольшее значение для оценки степени тяжести ОЛБ имеет диспептический синдром,

вчастности, время появления рвоты с момента облучения и ее частота: I степень ОЛБ – через 2 часа и более, однократная; II степень ОЛБ – через 1–2 часа, повторная; III степень ОЛБ – через 0,5–1 час, многократная; IV степень – через 15–20 минут, неукротимая. Признаками, свидетельствующими о высокой степени облучения (III–IV), являются развитие коллаптоидного состояния с падением артериального давления, кратковременная потеря сознания, раннее появление диареи.

214

215

2.Латентная фаза ОЛБ (фаза мнимого благополучия). Продолжительность латентной фазы – 10–30 суток, зависит от степени тяжести ОЛБ. При IV степени тяжести эта фаза отсутствует. Самочувствие пострадавших улучшается, может сохраняться потливость, неустойчивость пульса и артериального давления. Начинает проявляться такой характерный для ОЛБ процесс, как выпадение волос – эпиляция (поглощенная доза, вызывающая эпиляцию, 2,5–3 Гр).

При дозах облучения около 6 Гр на 8–15-й день вновь проявляются поражения кожи: болезненная отечность, стойкая краснота с багрово-синюшным оттенком. При дозах облучения 8 Гр и более на пораженных участках кожи появляются пузыри и изъязвления, которые долго не заживают. Отмечаются изменения в анализе периферической крови: снижение количества лейкоцитов, лимфоцитов и тромбоцитов (имеет место кровоточивость десен, носовые кровотечения).

3.Фаза разгара болезни. Прогрессирующее угнетение кроветворения в костном мозге -

основа всех клинических проявлений в данной фазе ОЛБ. О переходе в фазу разгара болезни судят по уменьшению количества лейкоцитов ниже 1*109/л. Самочувствие больных ухудшается, повышается температура, появляется резкая слабость, головная боль, головокружение. Возобновляются желудочно-кишечные расстройства: рвота, потеря аппетита, понос со слизистыми или кровянистыми выделениями, что приводит к обезвоживанию и потере массы тела. Ведущими в клинической картине являются 2 синдрома:

геморрагический – кровоизлияния в кожу, слизистые оболочки, желудочнокишечный тракт, мозг, сердце, легкие;

инфекционный, вызванный как присоединением внешней инфекции, так и активацией собственной микрофлоры. На слизистых оболочках возникают язвенные образования, которые осложняются гнойными воспалительными процессами - стоматитом, эзофагитом, гастроэнтеритом, некротической ангиной.

Продолжается выпадение волос.

В периферической крови: количество лейкоцитов, лимфоцитов и тромбоцитов резко

снижено; прогрессирует анемия.

При тяжелом поражении (4-6 Гр и выше) может наступить летальный исход. Продолжительность фазы – 1,5–2 недели

4. Фаза раннего восстановления. Самочувствие улучшается, появляется аппетит, нормализуется температура, происходит постепенное восстановление показателей периферической крови. Однако эпиляция сохраняется длительное время, наблюдается функциональная неустойчивость сердечно-сосудистой и нервной систем. Средняя продолжительность фазы раннего восстановления – 2–2,5 месяца.

5. Отдаленные последствия лучевого воздействия

Это различные изменения, которые возникают в отдаленные сроки (10–20 и более лет) после лучевой болезни в организме, внешне полностью «выздоровевшем» и восстановившемся от лучевого поражения. К ним относятся онкологические заболевания, генетические повреждения (неполноценность потомства), сокращение продолжительности и качества жизни, снижение иммунитета и другой ущерб здоровью.

Хроническая лучевая болезнь (ХЛБ)

ХЛБ развивается в результате продолжительного одно – или многократного облучения организма в малых дозах при интенсивности 0,1–0,5 Гр/сут, после суммарной дозы 0,7–1,0 Гр. ХЛБ никогда не возникает как исход острой лучевой болезни, хотя клиническая картина во многом сходна. Это объясняется одинаковыми механизмами повреждения клеток организма. Ее особенности обусловлены видом внешнего облучения,

215

216

многообразием клинических проявлений, сочетанием симптомов повреждения критических органов с реакциями приспособительного характера, высокой вероятностью отдаленных последствий. Три стадии.

Действие малых доз радиации

Авария на ЧАЭС выдвинула на первый план проблему действия на организм малых доз ионизирующих излучений, не угрожающих смертью или развитием острых состояний. Это дозы однократного облучения, не превышающие 0,5 Гр, а также дозы многократного облучения от 1 мЗв/год до 0,7 Зв/год. Острое облучение в дозах 0,1–0,7 Гр может сопровождаться возникновением временной «лучевой реакции», проявляющейся состоянием дискомфорта, общей слабостью, незначительным колебанием числа лейкоцитов.

Доказано, что малые дозы радиации, не оказывающие заметного физиологического влияния на организм, повышают частоту генетических нарушений в облученных клетках и вероятность развития определенных групп болезней (чаще новообразований) у популяции в целом. В Беларуси, например, резко возросла заболеваемость раком щитовидной железы в результате ее облучения радиоактивным йодом–131. Особое беспокойство вызывают генетические последствия аварии: у жителей республики значительно возрос уровень мутаций, хромосомных нарушений, увеличилось количество рождения детей с врожденными и наследственными пороками развития.

Особенности лучевой болезни при внутреннем облучении

Внешнее облучение - когда источник излучения находится вне организма, создается в основном гамма-излучением, рентгеновским излучением и нейтронным излучением. Его поражающая способность зависит от энергии излучения, продолжительности облучения, расстояния от источника излучения до объекта облучения и от защитных мероприятий.

Основную угрозу сегодня представляет внутреннее облучение: при этом 94 %

радионуклидов поступает в организм с продуктами питания, 5 % – с водой и 1 % – ингаляционно.

Внутреннее облучение - когда источник излучения находится внутри организма. Попадая в организм человека, радионуклиды накапливаются в отдельных органах и тканях в зависимости от типа изотопа. Например, равномерно по всему телу распределены: тритий, углерод, железо; в костях накапливаются: кальций, стронций, барий и другие химические элементы. По диффузному типу накапливаются калий,

натрий, цезий, рубидий и др.; в щитовидной железе накапливается йод, технеций.

При внутреннем облучении степень поражения организма зависит не только от количества попавших радионуклидов и распределения их по органам, но и от времени их выведения из организма. Скорость выведения различных радионуклидов из органов разная. Для оценки скорости выведения радионуклидов из организма используют понятие - период биологического полувыведения, т.е. это время, в течение которого количество данного радионуклида в органе или организме уменьшится вдвое.

Известно, что ВЫВОДЯЩИМИ системами организма являются почки, желудочно- кишечный тракт (ЖКТ), легкие и кожа. Косвенно противостоять радиации могут также печень, иммунная и кровеносная системы.

Лучевая болезнь при внутреннем облучении является хроническим заболеванием с формированием избирательного поражения отдельных органов. Особенности течения лучевой болезни при внутреннем облучении зависят от вида радионуклида и его распределения в организме (стронций – накапливается в костной ткани и подвергает облучению костный мозг и органы кроветворения, цезий – распределяется по диффузному

216

217

типу, в основном в мышцах; плутоний, америций – в печени – гепатит!, и в костях; йод – в щитовидной железе).

Существует два принципа защиты внутренней среды человека от радиации и экологических загрязнений.

Первый принцип - принцип оптимального здоровья, заключающийся в постоянном насыщении наших клеток полезными веществами с целью снижения накопления радионуклидов.

Второй принцип состоит в том чтобы избегать вредных продуктов питания. В круг «обвиняемых» попадает избыток молочных продуктов, пшеницы, мяса и птицы, сахара, жиров. Они затрудняют процесс отдачи эритроцитами 02 и поглощения СО2. Жирная пища способствует отложению в артериях вредных веществ, способствует образованию радикалов, что ведет к разрушению клеток, ослаблению иммунной системы и быстрому старению. Необходимые жиры можно получить от орехов и растительных масел. СМ. МЕРОПРИЯТИЯ ПО ВЫЖИВАНИЮ НАСЕЛЕНИЯ ПОСЛЕ КАТАСТРОФЫ НА ЧАЭС.

Практ. занятие . КОНТРОЛЬ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

ЗАЩИТА НАСЕЛЕНИЯ ПРИ АВАРИЯХ

ПРИНЦИПЫ И КРИТЕРИИ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

Широкое распространение и применение источников ИИ в науке, промышленности, медицине и сельском хозяйстве диктует необходимость применения системы мер государственного и международного контроля за обеспечением радиационной безопасности. Произошедшая катастрофа на Чернобыльской АЭС заставила пересмотреть отношение к безопасности работы атомных ЭС и мерам защиты населения при аварийных ситуациях.

Создан ряд межправительственных (МАГАТЭ, ЕВРАТОМ, ВОЗ, МОТ) и неправительственных (МКРЗ, ФИРЕ) международных организаций, на рекомендациях которых основано правовое регулирование использования источников ионизирующего излучения в различных странах.

1.МКРЗ (ICRP) - Международная комиссия по радиологической защите - независимый, неправительственный орган. Ее цель - установление основных принципов радиационной защиты и публикация соответствующих рекомендаций.

2.МАГАТЭ (IAEA) - Международное агентство по атомной энергии. Это международная межправительственная организация для осуществления сотрудничества и использования ядерной энергии в мирных целях. Агентство осуществляет контроль за безопасностью ядерной энергетики.

3.НКДАР (UNSCEAR) - Научный комитет по действию атомной радиа- ции, образованный Генеральной Ассамблеей ООН в 1955 году. Он предназначен для сбора и изучения информации по наблюдавшимся уровням ионизирующего облучения окружающей среды, а также по

последствиям такого облучения для человека.

Совет управляющих МАГАТЭ в июне 1994 года утвердил «Международные основные нормы безопасности для защиты от ионизирующих излучений».

217

218

Постановлением Министерства здравоохранения Республики Беларусь от 25.01.2000

года в РБ утверждены Нормы радиационной безопасности - НРБ-2000. Документ создан и применяется для обеспечения безопасности человека во всех условиях воздействия ионизирующего излучения:

в условиях эксплуатации техногенных источников излучения;

в результате радиационной аварии;

от природных источников излучения;

при медицинском облучении.

Нормы являются документом, регламентирующим требования Закона Республики Беларусь «О радиационной безопасности населения». В НРБ-2000 уточнены или включены

некоторые новые понятия и определения:

Предел дозы (ПД) - величина годовой эффективной или эквивалентной дозы техногенного облучения, которая не должна превышаться в условиях нормальной работы. Соблюдение предела годовой дозы предотвращает возникновение детерминированных эффектов, а вероятность стохастических эффектов сохраняется при этом на приемлемом уровне.

Радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью, повреждением оборудования, неправильными действиями обслуживающего персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей или радиоактивному загрязнению окружающей среды сверх установленных норм.

Радиационная безопасность населения - состояние защищенности настоящего и будущего поколений людей от вредного воздействия ионизирующего излучения

Цель радиационной защиты - предупреждение возникновения детерминированных эффектов путем поддержания доз ниже соответствующих порогов и обеспечения практически всех приемлемых мер для уменьшения вероятности возникновения стохастических эффектов.

Санитарно-защитная зона - территория вокруг источника ИИ,

на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы облучения для населения.

В санитарно-защитной зоне запрещается постоянное и временное проживание людей, вводится режим ограничения хозяйственной деятельности и проводится радиационной контроль.

Уровень вмешательства - уровень радиационного фактора, при превышении которого следует проводить определенные защитные мероприятия по радиационной безопасности населения.

При авариях на радиационноопасных объектах возможно такое загрязнение радионуклидами местности и объектов, что создает реальную угрозу жизни и здоровью людей. Это вынуждает принимать меры вмешательства в их жизнедеятельность.

Вмешательство - любое действие, направленное на снижение или предотвращение воздействия излучения от источников, которые вследствие аварии вышли из-под контроля.

Принципы вмешательства:

-вмешательство должно принести больше пользы, чем вреда

-уровень, при котором вводится вмешательство, и уровень, при котором оно затем прекращается, должны быть оптимизированы, чтобы добиться максимально чистой выгоды;

218

219

- должны быть предприняты все возможные меры для предотвращения серьезных детерминированных эффектов посредством ограничения доз ниже пороговых для этих эффектов.

Вмешательство осуществляется при использовании одного или нескольких следующих защитных мероприятий:

-организация укрытия людей в защитные сооружения;

-назначение препаратов стабильного йода

-эвакуация;

-отселение;

-защита органов дыхания;

-индивидуальная санитарная обработка;

-контроль доступа в зараженные районы;

-контроль загрязненности воды и пищевых продуктов, запрет (или ограничение) на отдельные пищевые продукты;

-дезактивация местности и объектов;

-изменения профиля сельскохозяйственного и промышленного производства.

Опользе каждого защитного действия следует судить на основе снижения с помощью этого защитного действия прогнозируемой дозы.

Вслучае возникновении аварии на РОО:

-контроль за ее развитием, защитой персонала осуществляется администрацией данной организации;

-контроль за облучением населения осуществляется местными органами власти и государственным надзором за радиационной безопасностью.

Если предполагаемая поглощенная доза облучения за 2 суток достигает уровней, превышающих показатели (в табл.), то принимаются срочные меры защиты.

При хроническом облучении в течение жизни защитные мероприятия становятся

Уровни доз, при которых предполагается вмешательство при любых обстоятельствах (острое облучение)

 

Прогнозируемая поглощенная

 

доза на

Орган или ткань

орган в течение менее 2-х суток,

 

Гр

Все тело (костный мозг)

1

Легкие

6

Кожа

3

Щитовидная железа

5

Хрусталик глаза, гонады

2

Гонады

3

Плод

0,1

обязательными, если годовые поглощенные дозы превышают значения приведенные в табл.

219

220

Уровни мощности эквивалентной дозы, при которых предполагается проведение вмешательства при любых обстоятельствах

Орган или ткань

Мощность эквивалентной дозы

 

 

(Зв/год)

Гонады

0,2

Хрусталик глаза

0,1

Костный мозг

0,4

К о ж а

0,5

 

 

 

Уровни вмешательства для временного отселения населения составляют: для начала временного отселения - 30 мЗв в месяц, для окончания временного отселения - 10 мЗв в месяц.

Главной целью радиационной безопасности является охрана здоровья населения путем соблюдения основных норм радиационной безопасности в различных областях хозяйства, в науке и медицине. В РБ в 2000г утверждены и работают Нормы Радиационной безопасности2000; Санитарные Нормы и Правила – СниП (2002г); Республиканские Допустимые Уровни содержания радионуклидов в продуктах питания и воде – РДУ-2001г.

*Основу НРБ-2000 в РБ составляют международные нормы радиационной безопасности, научные рекомендации, опыт стран и отечественный опыт. Учитываются как детерминированные, так и стохастические эффекты, а также индивидуальный и коллективный пожизненный риск возникновения стохастических эффектов.

Определен коэффициент пожизненного риска сокращения периода полноценной жизни в среднем на 15 лет на один стохастический эффект (от смертельного рака, серьезных наследственных эффектов и не смертельного рака, приводящего к тяжелым последствиям для здоровья): при Е > 200 мЗв/год. ***Облучение свыше 200 мЗв/год следует рассматривать как потенциально опасное!!!

Основные пределы доз соответствуют Международным нормам радиационной безопасности (от природного, техногенного и медицинского облучения). Пределы допустимых доз определены:

1.Для технического персонала (профессиональное облучение).

2.Для населения.

О г р а н и ч е н и е м е д и ц и н с к о г о о б л у ч е н и я н а с е л е н и я : При проведении профилактических медицинских рентгенологических исследований и научных исследований практически здоровых лиц годовая эффективная доза облучения этих лиц не должна превышать 1 мЗв/год. При использовании источников излучения в медицинских целях контроль доз облучения пациентов является обязательным.

220

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]