Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
128101_057FA_shpory_po_fizike_optika_.doc
Скачиваний:
14
Добавлен:
14.04.2019
Размер:
1.51 Mб
Скачать

34. Внешний фотоэффект и его законы.

Фотоэффектом называется электрические явления, которые происходят при освещении светом вещества, а именно: выход электронов из вещ-ва (фотоэлектронная эмиссия), возникновение ЭДС.

Вылет электронов из освещенных тел называют внешним фотоэффектом.

С толетов экспериментально установил, что внешний фотоэффект подчиняется следующим законам:

1.Максимальная скорость вылетающих с поверхности металла электронов не зависит от интенсивности падающего света, а зависит от его частоты.

2.Существует предельная длина волны характерного для каждого вещества, выше которого фотоэффект не наблюдается (простая граница Фотоэффекта).

Эти закономерности, наблюдаемые экспериментально, нельзя было объяснить, считая свет волной, в фотоэффекте действует корпускулярная природа света.

35. Уравнение Эйнштейна для внешнего фотоэффекта.

Фотоэффектом называется электрические явления, которые происходят при освещении светом вещества, а именно: выход электронов из вещ-ва (фотоэлектронная эмиссия), возникновение ЭДС.

Вылет электронов из освещенных тел называют внешним фотоэффектом.

Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Согласно Эйнштейну(Э), свет частотой ν не только испускается, как это предлагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых E0=hν. По Э. каждый квант поглощается только одним электроном(еˉ). поэтому число вырванных фото-еˉ должно быть пропорционально интенсивности света(1 закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с еˉ происходит почти мгновенно. Энергия падающего фотона расходуется на совершение еˉ работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии mV2max/2. по закону сохранения энергии, h·ν = Авых+ m·V2/2. (1)это уравнение Эйнштейна для внешнего фотоэффекта. Согласно урав-ю (1) получаем, что ν0=А/ h и есть красная граница фотоэффекта для данного металла. Она зависит лишь от работы выхода еˉ т.е. от химической природы вещеста и состояния его поверхности.

Из уравнения (1) непосредственно следует, что максимальная кинетическая энергия (mV2max /2) возрастает с увеличением частоты падающего света. С уменьшением частоты кинетическая энергия (mV2max /2) уменьшается и при некоторой частоте она становиться равной нулю и фотоэффект прекращается ( ). Отсюда

,

(2)

- красная граница фотоэффекта (ниже которой фотоэффект не наблюдается), она зависит лишь от работы выхода электрона из металла (то есть от химической природы вещества).

36. Модель атома Резерфорда и ее недостатки.

Существенную роль в создании классической модели атома сыграли опыты Резерфорда по рассеянию α-частиц. α-частица представляет собой ядро атома гелия (He), образуется при распаде тяжелых элементов. Резерфорд исследовал рассеяние α-частиц на металлических фольгах. d=10(c.-4)см – их толщина.

Подавляющее число α-частиц отклоняется на угол θ=π/2.

Очень незначительное число α-частиц изменили направление.

отклонение α-частицы обусловлено действием на нее эл. поля со стороны зарядов внутри атомов.

Из всех опытов Резерфорд пришел к следующим представлениям о строении атомов. Внутри атома имеется положительно заряженное ядро, заряд которого +ze, причем в ядре сосредоточен весь положительный заряд атома. С ядром связана и большая часть массы атома. Заряд ядра совпадает с порядковым номером элемента в таблице Менделеева. Т.к. атом нейтрален, то в атоме кроме положительно заряженного ядра есть электроны, причем суммарный заряд электронов равен положительному заряду ядра. Положительно заряженное ядро и электроны, входящие в состав атома, определяют внутриатомное эл. поле, которое в свою очередь характеризует межатомные взаимодействия. Т.к. атом является устойчивой системой, то конфигурация электронов в атоме является устойчивой. Однако никакое устойчивое распределение зарядов не может быть статическим. На основании этого Резерфорд пришел к выводу, что электроны должны вращаться вокруг ядра.

Однако модель Резерфорда явилась не универсальной.

Н едостатки: 1) Т.к. атом Резерфорда излучает непрерывно, то спектр излучения атома должен быть сплошным. Опыт показывает, что спектры носят линейчатый хар-р.

2) Согласно законам электродинамики электрон, вращаясь вокруг ядра, обладая нормальным ускорением, должен непрерывно излучать электро-магнитные волны => его энергия и расстояние м/у электроном и ядром должны непрерывно убывать. Т.к. из эксперимента известно, что атом излучает в течении τ=10(с.-8)с, то атом Резерфорда может существовать в течении этого времени, а после электрон упадет на ядро и атом прекратит свое существование. Эти недостатки имели принципиальное значение. Они показали, что движение электронов в атомах подчиняется иным законам, не нашедшим отражения в классической физике.