Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Формов. мат-лы..doc
Скачиваний:
86
Добавлен:
15.04.2019
Размер:
1.76 Mб
Скачать
  1. Смеси узкого назначения (цементные, масляные, гипсовые и другие)

Песчано-цементные смеси применяют главным образом для изготовления крупных форм и стержней в условиях единичного производства отливок. В качестве связующего материала для данного типа смесей используют цемент в количестве 7–10%. Твердение песчано-цементных смесей связывают с выделением из пересыщенного водно-цементного раствора кристаллогидратов, которые, срастаясь друг с другом, образуют прочный кристаллический каркас, связывающий зерна формовочного песка. При использовании портландцемента такими кристаллогидратами преимущественно являются гидросиликаты кальция, а при использовании глиноземистого цемента – гидроалюминаты кальция. С целью ускорения процесса твердения песчано-цементных смесей в их состав вводят специальные добавки, такие, как патока, хлористый кальций, железный корпус, а для улучшения выбиваемости – небольшие добавки СДБ (до 2,5%). Песчано-цементные смеси относят к категории самотвердеющих смесей. Применяют пластичные и жидкие песчано-цементные смеси.

При изготовлении жидких песчано-цементных смесей в состав их вводят СДБ в количестве 9–11%, которая проявляет себя как пенообразующее поверхностно-активное вещество.

Масляные смеси Название данного типа смесей условное, так как в настоящее время вместо масляных связующих широко используются их заменители (связующие П, ПТ, ГТФ, КО и др.), не содержащие в своем составе растительных масел.

Песчано-масляные смеси широко применяют для изготовления ответственных стержней I, II и III классов в условиях мелкосерийного и крупносерийного производства отливок. Упрочнение стержней, изготовленных из данного типа смесей, как правило, осуществляют тепловой обработкой – сушкой, температура которой зависит от природы применяемого связующего материала и колеблется от 170 до 180°С при использовании в качестве основного связующего крепителя М, декстрина, пектинового клея, а при использовании крепителей П, ПТ, ГТФ – до 200–220°С. Помимо связующих материалов, в состав песчано-масляных смесей вводят добавки формовочной глины с целью повышения прочности стержней во влажном состоянии и предупреждения их деформации под влиянием собственной массы, а также добавки СДБ. Кроме указанных выше добавок, при литье сплавов на основе

магния в состав смесей вводят специальные добавки: борную кислоту, фтористую присадку, которые предупреждают процесс окисления сплава в литейной форме.

  1. Смеси для художественного литья. Особенности выбора состава смесей.

Художественные отливки по степени сложности, массе и материалам из которого они изготовлены, весьма разнообразны. Следовательно, формовочные смеси для литейных форм выбираются для каждой отливки

Облицовочная смесь соприкасается с моделью, а следовательно, и с отливкой. Облицовочная смесь, воспроизводящая отпечаток поверхности модели, первая принимает на себя температурные воздействия заливаемого в форму металла и должна обладать хорошей прочностью, пластичностью, огнеупорностью и газопроницаемостью. Поэтому она содержит, как правило, больше свежих формовочные материалов и, как правило, более дорогая, используется в форме в небольших количествах, слоем 20 - 30 мм (на поверхности модели).

Наполнительная смесь состоит в основном из оборотной смеси с небольшим количеством свежих материалов.

Искусственные, или синтетические смеси - наиболее распространенные в производстве художественных и архитектурных отливок. Они представляют собой смесь песка и глины или нескольких песков с большим или меньшим содержанием глины и отработанной смеси. Формовочные смеси для форм чугунных отливок. Состав формовочных смесей зависит от сложности конфигурации и поверхности отливок, толщины их стенок и состояния ли­тейной формы перед заливкой. Смеси для форм ажурных отливок, имеющих сложную поверхность, тонкую стенку и большое число просветов, образующих ажур, должны обеспечивать получение в форме четкого отпечатка сложной поверхности модели и прочность мельчайших болванчиков, даю­щих просветы в отливке. Кроме того, чугун при заливке в форму по срав­нению с цветными сплавами имеет более высокую температуру. Поэтому формовочные смеси для форм, заливаемых чугуном, должны иметь доста­точную огнеупорность.

Повышение температуры заливки чугуна приводит к более интенсивному газовыделению при прогреве формы - формовочные смеси должны иметь хорошую газопроницаемость. Таким образом, формовочные смеси для форм, заливаемых чугуном, при достаточной прочности должны быть газопроницаемыми и огнеупорными.

Формовочные смеси для форм отливок из цветных сплавов Латунь, бронза и алюминиевые сплавы, применяемые в производстве художественного литья, по сравнению с чугу­ном имеют более низкую температуру заливки и большую жидкотекучесть. Поэтому при изготовлении литейных форм представляется возможным применять мелкозернистые формовочные смеси, дающие чистую и гладкую поверхность отливки.

Стержневые смеси в процессе заливки формы находятся в более тяжелых условиях, чем формовочные, поэтому они должны быть более прочными, газопроницаемыми, податливыми, огнеупорными, менее гигроскопичными, с хорошей выбиваемостью из отливки.

Основными материалами для приготовления стержневых смесей, как и для формовочных, является песок и глина. Однако большое количество глины, необходимое для повышения прочности, ухудшает газопроницаемость, податливость, выбиваемость смеси, увеличивает ее пригар к стенкам отливки. Для улучшения качества стержневой смеси в ее состав вместо глины вводят крепители. К ним относятся различного рода масла, декстрин, жидкое стекло и другие специальные материалы.

В технологическом процесс изготовления стержней значительную часть времени занимает их сушка. Трудоемкость и продолжительность процесса сушки стержней устраняются совершенно или сокращаются до минимума при использовании в стержневых смесях в качестве связующего жидкого стекла (5 - 7 %). Стержни из таких смесей твердеют на воздух без обработки, после продувки углекислым газом СО2. Используют их в пластичном и жидком состояниях.