Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика 3 сем.doc
Скачиваний:
9
Добавлен:
24.04.2019
Размер:
225.79 Кб
Скачать

5. Обратная матрица.

Матрица А(-1) называется обратной по отношению к квадратной матрице А, если при умножении этой матрицы на данную как справа, так и слева получается единичная матрица.

Теорема: Обратная матрица А(-1)существует (и единственна) тогда и только тогда, когда исходная матрица невырожденная.

Необходимость. Пусть матрица А имеет обратную А (-1), т.е. А*А (-1)= А(-1)А=Е. Тогда по свойству определителя (определитель произведения двух квадратных матриц равен произведению их определителей) │А*А(-1)│= │А│*│А(-1)│= │Е│=1, т.е. │А│=/0 и │A(-1) =/ 0

Достаточность. Пусть │А│=/ 0.Рассмотрим квадратную матрицу n-ого порядка Ẫ, называемую присоединенной, элементы которой являются алгебраическими дополнениями элементов матрицы А’, транспонированной к А: ẫij= А’ij=Aji (i=1,n; j=1,n) тогда элементы произведения матриц Ẫ*А=В определяются по правилу умножения матриц: bij = s=1∑n ẫisasj = s=1∑n Asi asj =

|A| i=j

0 при i=/j

Поэтому матрица В является диагональной, элементы ее главной диагонали = определителю исходной матрицы. Аналогично доказывается, что произведение А на Ẫ равно той же матрице В:А* Ẫ= Ẫ*А=В. Отсюда следует, что если в качестве обратной матрицы взять матрицу А(-1)= 1/ │А│* Ẫ (│А│<>0) (1)

То произведение А(-1) *А и А*А(-1) равны единичной матрице Е n-ого порядка: А(-1)*А=А*А(-1)= 1/│А│*В=Е

Алгоритм вычисления:

  1. находим определитель исходной матрицы. Если │А│=0, то матрица А – вырожденная и обратной матрицы не существует. Если │А│<>0, то матрица А – невырожденная и обратная матрица существует.

  2. Находим матрицу А’, транспонированную к А

  3. Находим алгебраическое дополнение элементов транспонированной матрицы А’ij=Aij (i=1,n; j=1,n) и составляем из них присоединенную матрицу Ẫ: ẫij= А’ij= Аij

  4. Вычисляем обратную матрицу по формуле (1,14)

  5. Проверяем правильность вычисления обратной матрицы А(-1), исходя из ее определения А*А (-1)= =А(-1)А=Е

6. Неопределенная система лау. Базисные.

Неопределённая система линейных алгебраических уравнений имеет бесчисленное множество решений. Придав свободным неизвестным нулевое значение получим решение системы, которое называется базисом.

Если система приведена к единичному базису, то её базисное решение находится сразу. Для этого необходимо положить свободные неизвестные равными нулю, тогда свободные члены определят значения базисных неизвестных.

Чтобы найти все базисные решения системы не возвращаясь вновь к исходной системе, используют преобразование однократного перемещения, основанном на методе Ж. Гаусса.

В любом единичном столбце выбирают отличное от нуля число и выполняют 1 итерацию этого метода, при этом необходимо следить, чтобы преобразования не повторялись.

Число базисных решений не должно превышать число С

Сrn=n!/r!(n-r)!

N – количество неизвестных в системе.

R – ранг матрицы (кол-во уравнений в системе)

7. Множества. Выпуклые линейные комбинации.

Пусть на плоскости х10х2 заданы две точки А1(х’1х’2) и А2(х’’1х’’2), определяющие направленный отрезок А1А2. Выразим координаты произвольной внутренней точки через координаты его концов, векторы А1А и А1А2 параллельны и одинаково направленные: А1А = t(А1А2), 0<=t<=1

A1A2=(x1-x’1;x2-x’2), A1A2=(x’’1-x’1;x’’2-x’2), x1-x’1=t(x’’1-x’1), x2-x’2=t(x’’2-x’2)

x1=(1-t)x’1+tx’’1, 1-t=λ1, t= λ2

x1= λ1x’1+ λ2x’’1, x2= λ1x’2+ λ2x’’2

λ1≥0 λ2≥0, λ1+ λ2=1

учитывая, что координаты точки А являются суммами одноимённых координат точек А1 и А2, умноженных соответственно на числа λ1 и λ 2, окончательно получаем:

А= λ1А1+ λ2А2, λ 1<=0, λ2≥0, λ1+λ2=1

Точка А, для которой выполняются эти условия называется выпуклой линейной комбинацией точек А1 и А2.

При условии λ1=1 и λ2=0 точка А совпадает с началом отрезка А1, λ1=0 λ2=1 – с концом

Таким образом если t пробегает все значения от 0 до1 то точка А описывает отрезок А1А2. Точки А1 и А2 называют угловыми или крайними точками отрезка А1А2. Из определения линейной выпуклой комбинации точек очевидно что угловая точка не может быть представлена как выпуклая линейная комбинация 2 других точек отрезка.

Множество называется выпуклым, если вместе с любыми 2 своими точками оно содержит и их произвольную линейную выпуклую комбинацию.

Точка выпуклого множества называется угловой, если она не может быть представлена в виде выпуклой линейной комбинации каких-нибудь 2 других различных точек данного множества.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]