Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основные формулы и определения по физики..doc
Скачиваний:
29
Добавлен:
26.04.2019
Размер:
1.04 Mб
Скачать

4.Динамика материальной точки.Масса.Сила. Импульс(количество движения).Законы Ньютона.

Первый закон Ньютона, утвер­ждает, что свободно движущееся тело, т. е. тело, на которое не действуют другие тела (или действие их взаимно скомпенсировано), относительно некоторых систем отсчета движется с неиз­менной скоростью (иногда говорят - движется по инерции). Первый закон Ньютона выделяет определенный класс систем отсчета, называемых инерциальными, в которых движение свободного тела имеет наиболее простой вид (происходит равномерно и прямолинейно, в частном случае – покоится), и в которых только и верна механика Ньютона. Иногда его и формулируют в виде утверждения о сущест­вовании инерциальных систем отсчёта (ИСО). Если известна хотя бы одна ИСО, то все ИСО, движущиеся относительно неё с постоянной скоростью, также будут инерциальными.

Обычно в качестве ИСО выбирают систему отсчёта, связанную с Землёй - геоцентрическую систему отсчёта. Её инерциальность приближенная, нарушаемая суточным вращением Земли вокруг своей оси. Большей степенью инерциальности обладает гелиоцентрическая СО, связываемая с Солнцем. На практике же, достаточной долей инерциальности обладает лабораторная система отсчета, связываемая с конкретным телом на Земле.

Согласно принципу относительности Галилея, все ИСО являются равноправными в отображении механических явлений, то есть все законы механики во всех ИСО имеют одинаковый вид и никакими механическими опытами, проводимыми внутри ИСО, нельзя обнаружить движется она или покоится.

В ИСО все наблюдаемое ускорение тела объясняется воздействием на него со стороны конкретных, окружающих его тел.В качестве меры этого воздейст­вия, вызывающего ускорения тел в ИСО, в механике Ньютона выбирается величина, называемая силой F. Сила F является векторной функцией положения и/или скорости тела относи­тельно ИСО, то есть F = F(r, ), и она прямо пропорциональна сообщаемому ею ускорению а тела:F(r, )  а или аF

Если на тело действует несколько сил, их можно заменить геометрической результирующей F = F - принцип суперпозиции сил (независимого наложения, сложения) сил.

Одна и та же сила сообщает разным телам разные ускорения. Таким образом, ускорение, приобретаемое телом, зависит не только от внешних воздействий, но и от внутрен­них свойств тела, мерой которых в механике Ньютона выбрана величина, названная массой (Под массой тела Ньютон понимал величину, пропорциональную его плотности и объему, то есть: m = ρV.) m тела. Очевидно, что более массивные тела, обладающие большей массой, должны приобретать меньшие ускорения при одинаковых воздействиях (силах).

В результате можно связать ускорение с силой и массой в следующем виде: а = Fm и утверждать, что ускорение а, приобретаемое точечным телом в ИСО прямо пропорционально действующей на него (или, как ещё говорят - приложенной к нему) результирующей силе F и обратно пропорцио­нально массе m тела. Это утверждение и представляет собой основной закон динамики материальной точки (и поступательного движения твёрдого тела) - второй закон Ньютона.

В механике Ньютона имеет место однозначная линейная взаимосвязь между мерами движения и взаимодействия, порождающая однозначную причинность и предсказуемость движения, называемую еще лапласовским или механистическим детерминизмом.

Такая динамическая характеристика тела, как его масса, выступает, мерой его инертности, неподатливости к изме­нению скорости, к изменению состояния движения. Чем больше масса тела, тем меньшее ускорение оно приобретает при воздействии одной и той же силы, т. е. тем медленнее изменяется его скорость. Инертность и выража­ет собой невозможность мгновенного изменения скорости тела, растяну­тость этого изменения во времени, т. е. замедленность изменения скорости тела. Измерение массы как меры инертности тела может быть осуществлено путём измерения и сравнения приобретаемых разными телами ускорений при воздействии на них одной и той же силы. Выбрав одно из тел за эталон массы, можно через его массу выразить массы других тел. Единица массы - килограмм (кг) является основной в СИ. Масса является аддитивной характеристикой тела, т. е. масса m совокупности тел, частиц равна сумме масс этих тел (частиц) по отдельности: m = m.

Сила, как векторная мера взаимодействия тел, измеряется производи­мым ею эффектом, численно равным произведению массы тела на его ускорение: F = mа. Единица силы в СИ - ньютон - сила, сообщающая телу массой в 1 кг ускорение в 1 м/с2.

При решении конкретных задач динамики 2-ой закон Ньютона записывают обычно в скалярной форме, т. е. в виде проекций на оси координат соответствующей ИСО:

ах = Fхm mах = Fх

а = Fm  ау = Fуm или mау = Fу

аz = Fzm mаz = Fz

При этом предполагается справедливость принципа суперпозиции (независимости действия и векторного характера сложения) сил, согласно которому результирующее ускорение, равно векторной сумме ускорений, сообщаемых телу действующими на него силами по отдельности.

2-ой закон Ньютона позволяет рассчитать ускорение а тела массой m, если известен характер действующих на него сил, то есть их зависимость от координат и скорости. В зависимости от характера этой зависимости различают ряд следующих видов сил:

- сила тяжести

F = mg - направлена вертикально вниз и, так как она прямо пропорциональна массе тела, сообщает всем телам одинаковое ускорение g  9,8 м/с2 (ускорение свободного падения); масса m здесь уже не инертная, а тяжелая- мера силы тяжести.

- сила гравитационного взаимодействия

Fгр = Gm1m2r2 - опре­деляет притяжение двух тел с массами m1 и m2, разделённых расстоя­нием r. Коэффициент G = 6,6710-11 Нм2кг2 – называется гравитационной постоянной. Масса здесь также тяжелая, выступающая в роли гравитационного заряда (двоякий смысл массы - мера инертности и мера гравитации).

- сила упругости

Fу = - kх, где х – вектор линейной деформации упругого тела (вектор приращения длины относительно ее недеформированного, равновесного значе­ния), а k - коэффициент упругости или в применении к пружине - жёст­кость пружины.

- сила вязкого сопротивления

F = - r, где - скорость тела в вязкой среде, r - коэффициент сопротивления среды (обычно жидкой или газо­образной).

Кроме названных выше сил большое значение в решении задач механики имеют такие силы, как вес тела и сила трения, которые не имеют явного выражения через коорди­наты или скорости:

- весом тела Р называют силу, с которой тело действует на подвес или опору;

- силой трения скольжения Fтр называют силу, прямо пропорциональную силе Fнд нормального давления (Обычно ее заменяют на численно равную ей силу N реакции опоры, то есть Fтр = μN.), т. е. составляющей веса тела, нормальной к поверхности опоры: Fтр = Fнд, где  - коэффициент трения скольжения тела о поверхность. Сила трения скольжения направлена против перемещения тела и является составляющей силы реакции опоры.

Исторически исходной (ньютоновской) формулировкой 2 - го закона Ньютона была следующая: F = dРdt, где Р = m - импульс тела. Эта форма записи второго закона Ньютона является более общей, сводящейся к известной ранее F = mа при условии независимости массы m тела от скорости  его движения. F = dРdt = d(m)/dt = md/dt = mа.

Третий закон Ньютона утверждает, что силы взаимодействия двух материальных точек в инерциальной системе отсчета: равны по модулю; противоположны по направлению; и действуют вдоль прямой, соединяющей точки

F12 = - F21

F12 - сила, действующая на первое тело со стороны второго тела; F21 - сила, действующая на второе тело со стороны первого тела. Этот закон вместе с первыми двумя законами Ньютона, позволяет осуществить переход от динамики точки к динамике системы точек.