Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тер.вер..docx
Скачиваний:
7
Добавлен:
27.04.2019
Размер:
464.03 Кб
Скачать

15. Вероятность и числовые ряды

В схеме Бернулли снимем ограничение на конечность числа испытаний и будем "проводить" повторные испытания (как независимые, так и зависимые) неограниченное число раз.

Рассмотрим урну, в которой содержатся белые и черные шары. Проводим эксперимент, который состоит в изъятии шара из урны до тех пор, пока не будет вынут белый шар.

Пусть событие = {извлечь белый шар} и = {извлечь белый шар при -м испытании} ( =1, 2, 3, ...).

Тогда

и

а

Заметим, что и если, например, Это обстоятельство используем при решении следующих примеров.

Пример 46 (сумма убывающей геометрической прогрессии). Доказать, что

где - рациональное число, удовлетворяющее неравенству

Решение 1 (вероятностное). Примем за и Проводим повторные вынимания шара с возвратом до появления белого шара. Вероятностное дерево эксперимента имеет вид:

Рис. 23

Пользуясь определением суммы ряда и вероятностным деревом, получим, что

и

Наконец, отсюда получаем, что

Решение 2 (геометрическое). Заполним единичный квадрат прямоугольниками, пары сторон которых лежат на сторонах квадрата, а вершинами прямоугольников выбираем соседние точки, удаленные от сторон квадрата на расстояния 1, , , ..., , , ...

Рис. 24

Поскольку то

16. Дисперсия

Дисперсия (D[x]) характеризует рассеивание или разряженность случайной

величины около ее математического ожидания.

Для дискретных

Для непрерывных

Дисперсия случайной величины всегда величина положительная

Размерность дисперсии равна квадрату разности случайной величины

Среднеквадратическое (стандартное) отклонение.

Некоторые законы распределения случайных величин.

Для дискретных случайных величин - биномиальное распределение и распределение

Пуассона

Для непрерывных - равномерное показательное, экспоненциальное и нормальное

распределение.

17. Биномиальное распределение.

Биномиальным называют законы распределения случайной величины Х числа

появления некоторого события в n опытах если вероятность р появления события

в каждом опыте постоянна

Сумма вероятностей представляют собой бином Ньютона

Для определения числовых характеристик в биномиальное распределение

подставить вероятность которая определяется по формуле Бернули.

При биномиальном распределении дисперсия равна мат. Ожиданию умноженному на

вероятность появления события в отдельном опыте.

Распределение Пуассона

Когда требуется спрогнозировать ожидаемую очередь и разумно сбалансировать

число и производительность точек обслуживания и время ожидания в очереди.

Пуассоновским называют закон распределения дискретной случайной величины Х

числа появления некоторого события в n-независимых опытах если вероятность

того, что событие появится ровно m раз определяется по формуле.

a=np

n-число проведенных опытов

р-вероятность появления события в каждом опыте

В теории массового обслуживания параметр пуассоновского распределения

определяется по формуле

а=λt , где λ - интенсивность потока сообщений t-время

Необходимо отметить, что пуассоновское распределение является предельным

случаем биномиального, когда испытаний стремится к бесконечности, а

вероятность появления события в каждом опыте стремится к 0.

Пуассоновское распределение является единичным распределением для которого

такие характеристики как мат. Ожидание и дисперсия совпадают и они равны

параметру этого закона распределения а.

18. ретье широко используемое дискретное распределение – распределение Пуассона. Случайная величина Y имеет распределение Пуассона, если

,

где λ – параметр распределения Пуассона, и P(Y=y)=0 для всех прочих y (при y=0 обозначено 0! =1). Для распределения Пуассона

M(Y) = λ, D(Y) = λ.

Это распределение названо в честь французского математика С.Д.Пуассона (1781-1840), впервые получившего его в 1837 г. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность р осуществления события мала, но число испытаний n велико, причем np = λ. Точнее, справедливо предельное соотношение

Поэтому распределение Пуассона (в старой терминологии «закон распределения») часто называют также «законом редких событий».

Распределение Пуассона возникает в теории потоков событий (см. выше). Доказано, что для простейшего потока с постоянной интенсивностью Λ число событий (вызовов), происшедших за время t, имеет распределение Пуассона с параметром λ = Λt. Следовательно, вероятность того, что за время t не произойдет ни одного события, равна e-Λt, т.е. функция распределения длины промежутка между событиями является экспоненциальной.

Распределение Пуассона используется при анализе результатов выборочных маркетинговых обследований потребителей, расчете оперативных характеристик планов статистического приемочного контроля в случае малых значений приемочного уровня дефектности, для описания числа разладок статистически управляемого технологического процесса в единицу времени, числа «требований на обслуживание», поступающих в единицу времени в систему массового обслуживания, статистических закономерностей несчастных случаев и редких заболеваний, и т.д.

Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в обширной (более миллиона названий статей и книг на десятках языков) литературе по вероятностно-статистическим методам.