Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
uchebnoe_posobie_biologicheskie_aktivnye_veshhe...doc
Скачиваний:
39
Добавлен:
08.05.2019
Размер:
1.09 Mб
Скачать

2.2. Карбоновые кислоты и их производные – участники реакций цикла Кребса

2.2.1 Цикл Кребса

Цикл Кребса – особая циклическая последовательность превращений трикарбоновых

(лимонной , цис-аконитовой, изолимонной ) и дикарбоновых кислот (янтарной, фумаровой, яблочной, щавелевоуксусной ), в процессе которой создаются условия для синтеза универсального макроэргического соединения АТФ. Цикл начинается с взаимодействия щавелевоуксусной кислоты с активной формой уксусной кислоты АцКоА и заканчивается вновь образованием щавелевоуксусной кислоты.

Последовательность реакций

Щавелевоуксусная кислота + ацетилКоА —> Лимонная кислота (цитрат)

—> цис- аконитовая ——> изолимонная ——> а – кетоглутаровая

——> янтарная ——> фумаровая ——> яблочная ——> щавелевоуксусная кислота

Для понимания свойств этих соединений надо знать классификацию карбоновых кислот

Химическое соединение является карбоновой кислотой, если в его составе есть функциональная карбоксильная группа. Общая формула R-COOH

Карбоновые кислоты классифицируют по нескольким признакам состава и строения:

1. по числу карбоксильных групп :

моно- , ди- , трикарбоновые кислоты и т.д.

  1. в зависимости от строения радикала:

-алифатические предельные ( ациклические, циклические )

- непредельные( содержат одну или несколько кратных связей)

- ароматические ( карбо- и гетероароматические )

3. в связи с присутствием в радикале других функциональных групп :

- гидроксикарбоновые (содержат одну или несколько гидроксильных групп )

- оксокарбоновые (содержат карбонильную группу- альдегидную или кетоновую)

- аминокислоты (содержат одну или несколько аминогрупп).

Активными биоактивными веществами, участниками и метаболитами биохимических реакций, являются все вышеперечисленные представители карбоновых кислот. Удобнее начать изучение субстратов цикла Кребса с лимонной кислоты.

2.2.2. Физико-химические и химические свойства in vivo карбоновых кислот – субстратов цикла Кребса

Лимонная, изолимонная кислоты - гидрокситрикарбоновые кислоты

CООН СООН

| |

НООС- СН2 – С -СН2- СООН НООС- СН-СН-СН2-СООН

| |

ОН ОН

лимонная кислота изолимонная кислота

Лимонная кислота (цитрат) - твердое кристаллическое вещество, растворима в воде.

Принадлежит к наиболее распространенным кислотам растений: в большом количестве находится в соке лимонов (6-8%), в смородине, бруснике, в свекольном соке, хвое, вине. В животных и человеческих клетках образуется в митохондриях. В реакциях in vivo она образуется в реакции соединения (конденсации) АцетилКоА и щавелевоуксусной кислоты.

СООН

|

НООС – СН 2– С -СООН + Н - СН2 - СОSКоА ——> НООС-СН2-С-СН2 -СООН

| | -НSКоА |

О ОН

Образует кислые и средние соли, связывает ионы кальция, ее используют в качестве антикоагулянта , добавляя к препаратам крови для предотвращения свертываемости, поскольку ионы кальция входят в состав факторов свертывающей системы крови.

При дегидратации лимонная кислота превращается в аконитовую (в реакциях цикла Кребса в цис-аконитовую). Гидратация цис - аконитовой сопровождается образованием изомера- изолимонной кислоты (направление реакции соответствует правилам реакции А Е - электрофильного присоединения)

- Н2 О СООН + Н2 О СООН

Лимонная кислота ——> | ——> |

СН2 СН2

| |

С- СООН С - СООН

| | |

С-Н ОН – С - Н

| |

СООН СООН

цис- аконитовая кислота изолимонная кислота

Лимонная и изолимонная кислоты отличаются положением гидроксигруппы: цитрат – третичный спирт, а изоцитрат – вторичный.

NB! Только у изолимонной кислоты гидрокси- группа может окисляться и эта реакция используется в цикле Кребса.

Лимонную кислоту используют в пищевой промышленности при изготовлении соков, напитков, кондитерских изделий, в медицине- добавка в производстве ряда лекарственных препаратов ( цитрамон – против головной боли), стерильный

4-5%раствор цитрата натрия используют для консервирования крови.

Щавелевоуксусная и альфа-кетоглутаровая кислоты – оксодикарбоновые кислоты

Щавелевоуксусная кислота (2- оксобутандиовая, оксоянтарная, ЩУК) Получила свое название в связи с тем, что ее скелет можно условно разделить на две части (фрагменты щавелевой и уксусной кислот)

СН- кислотный центр

НООС – С - СН2 -СООН

фрагмент щавелевой | | фрагмент уксусной

кислоты О кислоты

Существует в кетоновой и енольной формах. Енольные формы - кристаллические вещества, более устойчивы, существуют в виде двух изомеров : цис- и транс.

В растворе в интервале значений рН 6-10 образуется дианион (диссоциация по обеим группам). Анион на 82-88% находится в оксо-форме, на 7-10% в енольной форме

Строение енольной формы Пространственные изомеры енольной формы

НООС – С = СН—СООН

| НО- С - СООН НО - С - СООН

ОН | | | |

НООС — С -Н Н- С – СООН

(1) (2)

транс-гидроксифумаровая цис-гидроксималеиновая

кислота кислота

Восстановление ЩУК приводит к образованию яблочной (2-гидроксибутандиовой , гидроксиянтарной кислоты.).

При декарбоксилировании ЩУК образуется пировиноградная кислота. Максимальная скорость реакции при рН=5,0 - 6,5.

α–Кетоглутаровая (2-оксопентандиовая) – природное кристаллическое вещество, растворимое в воде. В природе два пути образования: в цикле Кребса и из глутаминовой аминокислоты. Возможна кето - енольная таутомерия .

НООС- СН2-СН2-С –СООН <———> НООС- СН2- СН=С-СООН

| | |

О ОН

Характерная реакция декарбоксилирования in vivo и in vitro, образуется полуянтарный альдегид, который в цикле Кребса сразу ферментативно окисляется в янтарную кислоту. Напоминаем, что реакция декарбоксилирования in vitro возможна только для α- и ß- кетокислот ( но не гидроксикислот или енольной формы).

декарбоксилирование и окисление

НООС- СН2- СН2 -С( О)-СООН ———>НООС –СН2 –СН2-СООН + СО2

янтарная кислота

Дикарбоновые кислоты.

Янтарная кислота (бутандиовая, сукцинат) НООС-СН2 -СН2 –СООН, хорошо растворима в воде, биоактивное вещество, относится к насыщенным дикарбоновым кислотам. Выделена из янтаря. Обнаружена в клетках растений, в тканях всех животных, содержится в митохондриях. Один из компонентов реакций цикла Кребса. Превращение in vivo янтарной кислоты в фумаровую является примером обратимой реакции дегидрирования ( окисления) с участием активированных атомов водорода СН2- кислотного центра и стереоспецифичной реакции, поскольку образуется только один изомер, имеющий транс-строение.

фермент

НООС-СН2- СН2 - СОООН + ФАД <———> ФАДН2 + НООС-СН = С Н -СООН

транс-бутендиовая фумаровая

Сложная молекула флавинадениндинуклеотида (ФАД ) является окислителем ( аналогично молекуле НАД +), содержит в своем составе рибофлавин - витамин В2.

Эту реакцию тормозит (ингибирует) малоновая кислота, в составе которой также две карбоксильные группы, но только один -СН2- кислотный центр.

Скелет янтарной кислоты имеют другие биоактивные соединения: яблочная , щавелевоуксусная кислоты, аминокислота аспарагиновая.

Все перечисленные кислоты превращаются друг в друга , обеспечивая энергетический и пластический обмен в клетке :

янтарная ↔ фумаровая ↔ яблочная ↔ щавелевоуксусная ↔ аспарагиновая.

| ……последовательность реакций цикла Кребса…………|

В клетках животных и человека янтарная кислота вместе с аминоуксусной кислотой (глицином) необходимы для синтеза сложной гетероциклической системы - гема., который состоит из 4 циклов пиррола.

Соль янтарной кислоты –сукцинат натрия- применяется как препарат, обладающий общим стимулирующим действием и выпускается в нескольких лекарственных формах: «Сукцинат Кардиа» - для профилактики нарушения сердечной деятельности , «Сукцинат Геронто» - для пожилого возраста, «Сукцинат Бэби» - для детей.

Бутендиовые кислоты – ненасыщенные дикарбоновые кислоты.

К ним относятся малеиновая (цис - бутендиовая) и фумаровая (транс - бутендиовая) кислоты – геометрические изомеры, кристаллические вещества. Малеиновая кислота хорошо растворима в воде, а фумаровая- трудно.

Фумаровая кислота- биологически активное соединение - содержится в грибах, лишайниках, клетках растений, выделена из повилики (Fumaria officinalis), в тканях животных и человека образуется в митохондриях в цикле Кребса. Малеиновая кислота- токсичное соединение для животных и человека, в природе не обнаружена.

Не может быть катализатора, осуществляющего обратный переход фумаровой кислоты в малеиновую.

Н Н Н СООН

\ / УФ, Т0, R · \ /

С = С ——————> С= С более устойчивая форма

/ \ / \

НООС СООН НООС Н

малеиновая кислота фумаровая кислота

Обе кислоты восстанавливаются в янтарную кислоту., in vivo это происходит с фумаровой кислотой с участием молекулы ФАДН2

НООС- СН=СН - СООН + ФАДН2 —фермент—>НООС - СН2 –СН 2– СООН +ФАД

фумаровая кислота янтарная кислота

В ферментативных реакциях in vivo присоединение воды (гидратация) к фумаровой кислоте приводит к образованию одного определенного пространственного изомера яблочной кислоты (D или L) .

НООС- СН=СН - СООН + НОН — (фермент ) ———> НООС - СН –СН 2– СООН

|

ОН

яблочная кислота

( в биохимии называют – малат)

Гидроксидикарбоновые кислоты (содержат две карбоксильные группы)

Моногидроксидикарбоновая кислота – 2-гидроксибутандиовая (оксиянтарная,. яблочная кислота, малат) – биологически активное соединение, присутствует в тканях животных, человека, в растениях (много в рябине, барбарисе). Впервые выделена К.Шееле в 1785 г. из незрелых яблок

НООС – СН2 – СН – СООН

|

ОН

Существует в виде двух стереоизомеров и рацемической смеси. L-малат образуется в цикле Кребса. Присутствие гидроксильной группы делает возможным две реакции: элиминирования и окисления.

Обратимая реакция элиминирования (дегидратации) приводит к образованию более устойчивого транс-изомера бутендиовой кислоты – фумаровой. В условиях in vivo эта реакция происходит в процессе цикла Кребса в обратном направлении: из фумаровой кислоты образуется яблочная..

НООС-СН( ОН ) -СН2 –СООН <——фермент ——> НООС-СН=СН-СООН + Н2 О

фумаровая кислота

транс-бутендиовая

Обратимая реакция окисления малата сопровождается образованием кетокислоты : 2-оксобутандиовой (оксоянтарной, щавелевоуксусной). Яблочную кислоту в медицине применяют в составе слабительных средств и препаратов от хрипоты.

НООС- СН-СН2-СООН + НАД + <——фермент ——> НООС-С –СН2 -СООН

| | |

ОН О

щавелевоуксусная кислота ( ЩУК)

Все субстраты цикла Кребса являются достаточно сильными кислотами, более сильными по сравнению с угольной кислотой, и вносят заметные изменения в состояния кислотно-основного равновесия в клетке и организме.

Таблица

Значение величин рКа биологически активных кислот цикла Кребса,

гликолиза ( для многокарбоновых кислот указано значение для ионизации

первой карбоксильной группы)

Кислота

Значение

рК а

Кислота

Значение

рК а

изолимонная

3,29

фумаровая

3,02

лимонная

3,13

щавелевоуксусная

2.22

молочная

3,73

яблочная

3,46

пировиноградная

2,39

янтарная

4,21