Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика в конспективном изложении.doc
Скачиваний:
133
Добавлен:
01.05.2014
Размер:
1.56 Mб
Скачать

3.10.1. Нормальное и тангенциальное ускорение

Направим единичный вектор  вдоль вектора скорости:

Тогда

(по правилу нахождения производной от произведения).

Первый член, нормальное ускорение,

показывает быстроту изменения направления скорости.

Второй, тангенциальное ускорение,

направлен вдоль скорости и показывает быстроту изменения ее модуля.

Направление и величину нормального ускорения найдем для частного случая равномерного движения материальной точки по окружности:

Направлен , при, по вектору:

.

.

Нормальное ускорение направлено по нормали к скорости, его модуль:

.

Для движения по произвольной кривой R - радиус кривизны траектории - не будет величиной постоянной.

.

.

4. Динамика материальной точки

4.1. Почему в кинематике вводят только две производные от радиус-вектора: первую - скорость

.

и вторую - ускорение?

.

А если ввести некую ?

Можно, но обычно не нужно. Основная задача механики - предсказать положения тел в любой момент времени, т.е. предсказать вид функции для всех изучаемых тел. Но в природе не существует фундаментального закона, что-либо утверждающего непосредственно о радиус-векторе материальной точки.

Закон обнаруживается на более глубоком уровне - на уровне второй производной от радиус - вектора:

- нет закона;- нет закона;- есть закон!     →, см.(4.6). Двигаясь по этой цепочке "обратным ходом", мы можем, получив из закона природы (второй закон Ньютона) ускорение , найти сначала, затем и. Поэтому обычно нет необходимости дифференцироватьбольше, чем два раза.

4.2. Инерциальные системы отсчета. Первый закон Ньютона Инерциальная система отсчета - это система отсчета (3.3), в которой тела, не подверженные воздействию других тел, движутся прямолинейно и равномерно. Первый закон Ньютона:

Всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние.

4.3. Сила- векторная величина, характеризующая воздействие на данное тело других тел. Величину силы можно определить опытным путем, используя прибор для измерения силы - динамометр.

4.4. Масса тела, m, - скалярная величина, являющаяся мерой инертности тела. Инертность - неподатливость действию силы, свойство тела сохранять величину и направление своей скорости, невозможность ее мгновенного изменения.

4.5. Импульс материальной точки - это вектор, равный, в механике Ньютона, произведению массы точки на ее скорость.

При v → с это определение импульса не годится. Импульс в этом случае (в теории относительности) :

.

4.6. Второй закон Ньютона Скорость изменения импульса равна действующей на материальную точку результирующей силе: .

,       где      

Из (4.5)

при m ≠ m(t)

,

т.к.

(3.10),      то

      или       .

4.6.1. Система си (System international)

В этой системе семь основных единиц, для них существуют эталоны.

Это единица длины - метр (м);

массы - килограмм (кг);

времени - секунда (с);

силы электрического тока - ампер (А);

температуры - Кельвин (К);

силы света - кандела (кд);

количества вещества - моль (моль).

Все остальные единицы являются производными, их размерности определяются из формул, связывающих производные величины с основными.

В механике используются первые три единицы: метр, килограмм, секунда. Отметим, что с точки зрения логики эти три единицы являются достаточными для введения производных от них величин не только в механике, но и во всей физике.