Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тезисы лекций Оптика.doc
Скачиваний:
27
Добавлен:
27.09.2019
Размер:
977.92 Кб
Скачать

5. Фотоны

Атомы, оказавшись в возбужденном состоянии вследствие теплового движения, или под действием электрического поля, удара другого атома и т.д., излучают избыток энергии в виде электромагнитной волны. Время излучения составляет менее 10-8 с, и поэтому электромагнитная волна имеет ограниченные размеры. По гипотезе Эйнштейна, распространяясь в пространстве и взаимодействуя с веществом, она ведет себя не только как волна, но и как частица, корпускула. Такие частицы названы фотонами. Корпускулярные свойства света проявляются в таких экспериментах как внешний и внутренний фотоэффект, давление света, эффект Комптона и других опытах.

  1. Параметры фотонов

Энергия фотона, излученного атомом, по гипотезе Планка, равна произведению постоянной Планка на частоту излучения:

, 5.1

где h =6,63∙10-34 Дж∙с, λ – длина волны.

Масса покоя фотона равна нулю, так как по своей природе фотон это электромагнитная волна, которая не может находиться в покое. Однако фотон обладает энергией. По уравнению Эйнштейна эквивалентности между массой и энергией, масса фотона равна отношению энергии фотона к квадрату скорости света

. 5.2

Импульс фотона, как и для любого тела, равен произведению массы на скорость, равную скорости света

, 5.3

2. Внешний фотоэффект

В нешний фотоэффект – это явление испускания электронов телами под действием света. Экспериментальное исследование фотоэффекта впервые провел А.Г. Столетов. Вакуумный фотоэлемент (стеклянный баллон с электродами) включался в цепь источника постоянного тока. Катод из исследуемого металла освещался монохроматическим светом. Исследовалась зависимость силы фототока от напряжения (вольтамперная характеристика) (рис.5.1), от частоты монохроматического излучения (спектральная характеристика), и от освещенности.

Рассмотрим вольтамперную характеристику (рис. 5.2). При отсутствии напряжения сила фототока не равна нулю, так как электроны, вылетая из катода при его освещении, образуют электронное облако, из которого они могут попадать на анод и перемещаться по внешней цепи обратно на катод. С ростом прямого напряжения все большая часть электронов под действием электрического поля попадает на анод и сила фототока быстро возрастает. Когда все испускаемые катодом электроны попадают на анод, сила фототока достигает насыщения. Сила тока насыщения равна заряду электронов, испускаемых катодом и попадающих на анод в единицу времени, I = e n.

При смене полярности с ростом напряжения сила фототока падает, так как запирающее электрическое поле препятствует попаданию из электронного облака на анод сначала медленных электронов и, наконец, самых быстрых. Напряжение, при котором сила фототока падает до нуля, называется запирающим. Его величина определяется из закона сохранения энергии: кинетическая энергия самых быстрых электронов расходуется на совершение работы против сил поля

. 5.4

При изучении зависимости силы фототока от частоты монохроматического света (спектральная характеристика фотоэлемента) обнаружено, что фотоэффект возможен только в диапазоне частот выше так называемой красной границы (рис. 5.3).

На основании экспериментов Столетов установил законы фотоэффекта. 1. Сила фототока насыщения при освещении катода монохроматическим светом прямо пропорциональна световому потоку. 2. Максимальная кинетическая энергия фотоэлектронов не зависит от освещенности, а линейно зависит от частоты. 3. Для каждого металла существует так называемая красная граница фотоэффекта, то есть граничная частота, ниже которой фотоэффект не происходит.

Волновая теория света не смогла объяснить законы фотоэффекта. По этой теории электроны раскачиваются в электрическом поле световой волны любой частоты и, набрав за некоторое время достаточно энергии, вылетают из металла. На самом деле фотоэффект практически безинерционен и фотоэффект вызывает свет, частота которого выше граничной частоты. По волновой теории кинетическая энергия должна быть пропорциональна амплитуде напряженности поля, то есть освещенности. На самом деле энергия фотоэлектронов не зависит от освещенности, а только от частоты облучения

Закономерности фотоэффекта объяснила квантовая теория света. По этой теории свет – это поток фотонов, излученных атомами и молекулами вещества. Энергия фотона e = h n. При фотоэффекте фотоны, попадая в металл, взаимодействуют с электронами. Это процесс неупругого взаимодействия, после которого фотон, отдав энергию электрону свою энергию, перестает существовать. Если электрон, получив избыточную энергию, движется к поверхности, то он имеет шанс вылететь за пределы металла. Закон сохранения энергии для фотоэффекта, называемый уравнением Эйнштейна, имеет вид

, 5.5

энергия, полученная электроном от фотона, расходуется им на совершение работы выхода из металла А и на приобретение кинетической энергии.

Работа выхода электрона обусловлена преодолением двойного тормозящего электрического слоя, образованного свободными электронами над поверхностью металла, и взаимодействием с зарядившимся положительно металлом. Не все электроны вылетают с максимальной скоростью. Некоторые теряют часть энергии в поверхностных слоях металла и вылетают с меньшей скоростью. Некоторые, более 99 %, остаются в металле, нагревая его.

Уравнение Эйнштейна объясняет закономерности фотоэффекта. Во-первых, сила фототока насыщения пропорциональна световому потоку, так как пропорционально растет число фотонов. Во-вторых, максимальная кинетическая энергия фотоэлектронов, согласно уравнению Эйнштейна, зависит только от частоты по линейному закону. В-третьих, с уменьшением частоты света, при некоторой так называемой граничной частоте, энергии даже самому быстрому электрону хватает только на то, чтобы выйти за пределы металла. Если частота будет меньше граничной, то энергия электрона будет недостаточна для совершения работы выхода и фотоэффекта не будет

hnгр = А. 5.6

Явление фотоэффекта находит широкое применение в автоматике, телемеханике, измерительной технике, в приборах измерения освещенности, и т.д.