Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы для заочников.doc
Скачиваний:
12
Добавлен:
27.09.2019
Размер:
2.42 Mб
Скачать

29. Теорема Гаусса для вектора .

  1. Теорема Гаусса для вектора поляризации диэлектрика: поток вектора через произвольную замкнутую поверхность S равен взятому с обратным знаком избыточному связанному заряду диэлектрика в объеме, охватываемом поверхностью S:

.

30. Вектор (электрическое смещение). Теорема Гаусса для вектора .

Напряженность электростатического поля, зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна e. Вектор напряженности Е, переходя через границу диэлектриков, претерпевает скачкообразное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще вектором электрического смещения, который для электрически изотропной среды, по определению, равен

Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать, однако, перераспределение свободных зарядов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности.

Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D — только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверхность

где Dn — проекция вектора D на нормаль n к площадке dS.

31

ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ КОНДЕНСАТОРА.

Электрический конденсатор – пассивный электронный компонент, обычно двухполюсник с определённой величиной ёмкости и малой омической проводимостью. Служит для накопления заряда и энергии электрического поля. Выполняется, как правило, в виде двух электродов в форме пластин, разделённых диэлектриком малой толщины.

В цепи постоянного тока конденсатор проводит ток только в момент включения его в цепь, после окончания переходного процесса ток через него уже не протекает. В цепях переменного тока прохождение колебаний переменного тока обусловлено процессом циклической перезарядки конденсатора, замыкаясь током смещения.

Способность конденсатора накапливать электрический заряд является его основной характеристикой - ёмкостью. Величина ёмкости конденсатора определяется из выражения:

C = ( eeoS)/d,

Где: e - относительная диэлектрическая проницаемость диэлектрика (вещества, которое заполняет пространство между пластинами конденсатора eo – диэлектрическая постоянная ( численно равна 8,854*10-12 Ф/м);

S – величина площади пластины м2;

d – расстояние между пластинами м.

Ещё одной важной характеристикой конденсатора является его номинальное напряжение. Это величина напряжения, при котором он может работать в заданных условиях в течении всего срока службы не меняя своих параметров. Если приложить номинальное напряжение к обкладкам конденсатора – осуществится зарядка конденсатора. Энергия заряженного конденсатора сосредоточена в его электрическом поле и определяется из выражения:

W = (CU2)/2,

Где: U – величина напряжения, до которой заряжен конденсатор.

При разряде, энергия электрического поля конденсатора расходуется на работу связанную с перемещением зарядов – на создание электрического тока. В идеальном конденсаторе осуществляется циркуляция энергии: электрическая энергия накапливается в электрическом поле конденсатора на протяжении четверти периода, а в течении следующей четверти периода вновь возвращается в сеть.

32

По теореме Гаусса поток вектора D через цилиндр ничтожно малой высоты равен нулю (нет свободных зарядов) DnAS-Dn.AS = 0,

Таким образом, при переходе через границу раздела двух диэлектрических сред нормальная составляющая вектора D (Д.,) изменяются непрерывно (не претерпевают скачка), и тангенциальная составляющая вектора D (Dx) претерпевают скачок.