Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Обмен простых белков и аминокислот.doc
Скачиваний:
93
Добавлен:
15.11.2019
Размер:
200.19 Кб
Скачать

Нарушение процессов обезвреживания аммиака.

Приводит к его накоплению в крови. Развивается состояние - гипераммониемия. Токсичность аммиака объясняется его способностью связывать в клетках -кетоглуторат за счет обратимости действия фермента глутоматдегидрогиназы. В митохондриях резко падает концентрация -кетоглутората, что приводит к нарушению работы цикла Кребса и развитию тяжелейшего гипоэнергетического состояния вплоть до летального исхода.

Гипераммонеимия может быть:

Первичной. В этом случае ее развитие обуславливается врожденной недостаточностью одного из ферментов мочевинообразования. В крови может повышаться содержание или одного аммиака (данный эффект наблюдается при врожденной недостаточности 2-х первых ферментов участвующих в мочевинообразовании: карбомоилфосфатсинтетазы или орнитинкарбомоилтрансферазы) или же увеличиваться содержание аммиака вместе с повышением содержания одного из продуктов - неполного синтеза мочевины.

Например при дефекте синтеза агргиназы кроме аммиака в крови накапливается еще и аргинин. Таким образом можно провести дифференциальную диагностику о нарушении синтеза какого фермента мочевинообразования идет речь.

Для облегчения состояния таких больных им необходимо уменьшать содержание белка в пищевом рационе. Поступление пищевых белков должно быть разбито на как можно больше порций. Эти мероприятия предотвращают одномоментное поступление больших количеств аминокислот во внутренюю среду, а следовательно накопление аммиака. Дети с подобным родом нарушений испытывают отвращение к мясной пище и другой пище богатой белками.

Вторичной. Встречается при тяжелых поражениях печени хотя необходимо отметить, что печень обладает большими резервными возможностями в обезвреживании аммиака. Сохранение всего 1/6 части неповрежденной печеночной ткани может полностью обеспечивать обезвреживание аммиака.

Особенности обмена некоторых аминокислот.

Мы рассмотрим превращение тех аминокислот в ходе преобразования которых образуются биологически важные соединения.

Обмен серина и глицина и система переноса одноуглеродных соединений.

Серин и глицин являются заменимыми аминокислотами. Серин образуется из промежеточного продцукта распада глюкозы: из трифосфоглицериновой кислоты. Аминный азот необходимый для синтеза серина поставляется глутаминовой кислотой.

В ходе дегидрирования которое катализируется 3фосфоглицератдегидрогиназой (в качестве кофермента содержат НАД) происходит превращение в трифосфопирувата. Далее реакция трансаминирования катализируемая трансаминазой. Источником аминного азота является глутомат который превращается в -кетогруторат. Образуется 3фосфосерин, а далее в ходе фосфотадной реакции образуется серин. Эти реакции обеспечивают синтез серина из промежуточного распада глюкозы.

Серин используется во многих метаболических путях:

Во-первых в синтезе белков и пептидов

Во-вторых в синтезе глицерофосфолипидов

В-третьих в синтезе сфингозидов.

Чрезвычайно важными являются метаболические пути в ходе которых атомы углерода серина принимают в формировании системы переноса одноуглеродных группировок которые используются в различных видах биосинтеза. Далее мы изобразим образование группировок переносимых тетрогидрофолатом - кофермент основу которого составляет фоливая кислота (vit B9).

Серин в ходе первой реакции (фермент - серингидроксиметилтрансфераза) превращается в глицин.

Затем атом углерода концевой гидроксиметильной группировки переносится на тетрогидрофолат с образованием N5,N10-метиленТГФ.

Глицин может в ходе последующего расщепления так же превращаться в мителенТГФ при этом образуется НАДН+Н+, аммиак, СО2.

Образующийся метиленТГФ может окисляться до N5,N10-метинилТГФ или восстанавливаться до N5-метилТГФ.

Таким образом 2 атома углерода серина (один непосредственно серина, а второй через промежуточные образования глицина) могут включаться в систему одноуглеродных группировок переносимых тетрогидрофолатом.

Одноуглеродные группировки переносимые ТГФ используются например при синтезе нуклеотидов. Например метинильная группа (-СН-) и формильная группа (-СООН-) используются при синтезе пуриновых нуклеотидов. Кроме того N5,N10-метиленТГФ служит донором одноуглеродной группы при превращении перимидинового азотистого основания урацила в тимин. Таким образом одноуглеродные группировки используются при синтезе как пуриновых, так и перимидиновых нуклеотидов.

Обмен метионина и его роль в системе переноса одноуглеродных группировок.

Метионин в отличии от глицина и серина является незаменимой аминокислотой. Он используется для синтеза белков и различных пептидов, но кроме того метионин является источником одноуглеродных группировок в реакциях трансметилирования.

В реакциях трансметилирования метионин участвует в своей активированной форме в виде Sаденозилметионина, который образуется из метионина с участием АТФ (фермент - ацилтрансфераза).

Атом серы связанный с метильной группой имеет положительный заряд и метильная группа обладает высокой подвижностью, поэтому Sаденозилметионин и служит хорошим донором метильных группировок в реакциях трансметилирования.

Реакции трансметилирования играют важную роль в организме человека.

Дело в том, что они являются составной частью метаболических путей синтеза холина, креатина, карнозина и адреналина.

Трансметилирование играет важную роль в образовании минорных нуклеотидов в ДНК и РНК.

А так же в метилировании гистонов.

2-е и 3-е играет важную роль в функционировании генетического аппарата клеток.

Трансметилирование участвует так же в функционировании механизмов биотрансформации, т.е. в обезвреживании ксенобиотиков и в инактивации соединений биорегуляторов.

В общем реакции метилирования выглядят следующим образом:

Активированный метионин является источником метильной группы. В процессе образуется метилированный субстрат, а потерявший метильную группу Sаденозилметионин превращается в Sаденозилгомоцистиин.

Это соединение сможет распадаться до аденозина и гомоцестиина, а гомоцестиин может использоваться в клетках для синтеза заменимой аминокислоты - цистеина.

С другой стороны из этого соединения может вновь образоваться Sаденозинметионин, но для этого необходим донор метильных группировок. Таким соединением в клетках служит N5-метилТГФ.

С помощью этой реакции система переноса одноуглеродных группировок, функционирующая с участием ТГФ, оказывается связанное в единое целое с системой переноса метильных группировок работающих с участием Sаденозилметионина.

В качестве кофактора фермента участвующего в ресинтезе Sаденозилметионина используется кобамидный кофермент - производное витамина В12.

Поэтому естественно, что при недостатка в пище фоливой кислоты - витамина В9, витамина В12 или метионина функционирование системы переноса одноуглеродных группировок в клетках и в организме в целом нарушается, что приводит к развитию достаточно тяжелых патологических состояний.

При недостатке этих пищевых факторов нарушается синтез:

пуриновых и перимидиновых нуклеотидов

  • нуклеиновых кислот ДНК и РНК, что в свою очередь приводит к нарушению функционирования тех тканей, для которых характерно быстрое размножение клеток(красный костный мозг).

Именно поэтому при недостатке в организме фоливой кислоты или каболамина у людей развивается анемия.

Особенности обмена фенилаланина и тирозина.

Фенинлаланин в клетках используется только по двум направлениям:

  1. Синтез белков и пептидов

  2. Синтез тирозина.

Образование тирозина из фенилаланина идет при участии фермента - фенилаланин-4-монооксигиназы (фенилаланингидроксилаза). Причем в реакции в качестве косубстрата используется тетрогидробиоптерин.

Необходимый участник - кислород. Образуется еще один продукт реакции - вода. Таким образом тирозин является заменимой аминокислотой, но синтезироваться он может только из фенилаланина.

Кроме биосинтеза белков и пептидов из тирозина синтезируются:

  1. котехоламины

  2. меланин

Избыток тирозина подвергается в организме расщеплению до фумаровой кислоты и ацетоуксусной кислоты. (реакции в учебнике)