Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций ВМ (I семестр).doc
Скачиваний:
18
Добавлен:
16.04.2019
Размер:
2.46 Mб
Скачать

Базис. Координаты вектора в базисе

Определим понятие базиса на прямой, плоскости и в пространстве.

Базисом на прямой называется любой ненулевой вектор на этой прямой. Любой другой вектор , коллинеарный данной прямой, может быть выражен через вектор в виде .

Базисом на плоскости называются любых два линейно независимых вектора и этой плоскости, взятые в определенном порядке. Любой третий вектор , компланарный плоскости, на которой выбран базис может быть представлен в виде .

Базисом в трехмерном пространстве называются любые три некомпланарных вектора , взятые в определенном порядке. Такой базис обозначается . Пусть ‑ произвольный вектор трехмерного пространства, в котором выбран базис . Тогда существуют числа такие, что.

(4.2)

Коэффициенты называются координатами вектора в базисе , а формула (4.2) есть разложение вектора по данному базису.

Координаты вектора в заданном базисе определяются однозначно. Введение координат для векторов позволяет сводить различные соотношения между векторами к числовым соотношениям между их координатами. Координаты линейной комбинации векторов равны таким же линейным комбинациям соответствующих координат этих векторов.

Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении

Декартова прямоугольная система координат в пространстве определяется заданием единицы масштаба для измерения длин и трех пересекающихся в точке взаимно перпендикулярных осей, первая из которых называется осью абсцисс , вторая – осью ординат , третья – осью аппликат ; точка ‑ начало координат (рис. 4.4).

Рис 4.4.

Положение координатных осей можно задать с помощью единичных векторов , направленных соответственно по осям . Векторы называются основными или базисными ортами и определяют базис в трехмерном пространстве.

Пусть в пространстве дана точка . Проектируя ее на ось , получим точку . Первой координатой или абсциссой точки называется длина вектора , взятая со знаком плюс, если направлен в ту же сторону, что и вектор , и со знаком минус ‑ если в противоположную. Аналогично проектируя точку на оси и , определим ее ординату и аппликату . Тройка чисел взаимно однозначно соответствует точке .

Система координат называется правой, если вращение от оси к оси в ближайшую сторону видно с положительного направления оси совершающимися против часовой стрелки, и левой, если вращение от оси к оси в ближайшую сторону видно совершающимися по часовой стрелке.

Вектор , направленный из начала координат в точку называется радиус-вектором точки , т.е.

(4.3)

Если даны координаты точек и , то координаты вектора получаются вычитанием из координат его конца координат начала : или .

Следовательно, по формуле (5):

или

(4.4)

При сложении (вычитании) векторов их координаты складываются (вычитаются), при умножении вектора на число все его координаты умножаются на это число.

Длина вектора равна квадратному корню из суммы квадратов его координат.

.

(4.5)

Длина вектора , заданного координатами своих концов, т.е. расстояние между точками и вычисляется по формуле

.

(4.6)

Если и коллинеарны, то они отличаются друг от друга скалярным множителем. Следовательно, у коллинеарных векторов координаты пропорциональны:

.

(4.7)

Пусть точка делит отрезок между точками и в отношении , тогда радиус-вектор точки выражается через радиусы-векторы и его концов по формуле: .

Отсюда получаются координатные формулы:

.

В частности, если точка делит отрезок пополам, то и , т.е. .