Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций ВМ (I семестр).doc
Скачиваний:
18
Добавлен:
16.04.2019
Размер:
2.46 Mб
Скачать

Линейное преобразование переменных

Линейным преобразованием переменных называется выражение системы переменных через новую систему переменных с помощью линейных однородных функций

Линейное преобразование вполне определяется матрицей размером , составленной из коэффициентов при . Эту матрицу называют матрицей линейного преобразования или матрицей линейного оператора.

Пусть и – два линейных пространства размерности и соответственно. Отображение называется линейным оператором, если:

Линейное преобразование переменных с квадратной матрицей называется невырожденным, если матрица невырожденная и вырожденным, если матрица вырожденная.

Теорема. Для всякого невырожденного линейного преобразования переменных с квадратной матрицей существует обратное преобразование, которое является также линейным, и его матрица равна .

Собственные значения и собственные вектора матриц

Число называется собственным значением (или характеристическим числом) квадратной матрицы порядка , если можно подобрать такой –мерный ненулевой вектор , что .

Для того, чтобы найти собственные значения матрицы , рассмотрим матрицу

Если раскрыть определитель матрицы , то получится многочлен –й степени:

Этот многочлен называется характеристическим многочленом матрицы . Его коэффициенты зависят от элементов матрицы . Понятие многочлена будет подробно разобрано в следующем разделе.

Следует отметить, что , . Уравнение называется характеристическим уравнением матрицы .

Теорема. Множество всех собственных значений матрицы совпадает с множеством всех решений характеристического уравнения матрицы .

Доказательство: ,

– ненулевой набор чисел, – вырожденная матрица – решение уравнения

.

Собственным вектором квадратной матрицы порядка , принадлежащим ее собственному значению называется -мерный вектор , для которого .

Множество всех собственных векторов матрицы , принадлежащих ее собственному значению , обозначим через . Отыскание собственных векторов сводится к решению однородной системы линейных уравнений.

Теорема. Множество всех собственных векторов матрицы порядка , принадлежащих ее собственному значению , совпадает с множеством всех решений однородной системы линейных уравнений , где

Доказательство:

В развернутом виде равенство записывается как система уравнений:

Если зафиксировано число , то задача нахождения собственного вектора матрицы сводится к поиску ненулевого решения системы линейных однородных уравнений с неизвестными , которые являются координатами вектора . Эта система имеет ненулевое решение только тогда, когда выполняется условие

,

т.е. число является собственным числом матрицы .

Знание всех собственных векторов матрицы позволяет решить задачу диагонализации этой матрицы, то есть нахождения треугольной или диагональной матрицы, имеющий такие же собственные значения.

Теорема. Предположим, что квадратная матрица -го порядка имеет линейно независимых собственных векторов. Тогда если взять эти векторы в качестве столбцов матрицы , то матрица будет диагональной матрицей, у которой на диагонали стоят собственные значения матрицы , т.е.

Теорема. Если и – два различных собственных значения симметрической матрицы , то соответствующие им собственные векторы и удовлетворяют соотношению , т.е. они ортогональны.

Таким образом собственные значения симметрической матрицы различны, а, значит, если пронормировать соответствующие им собственные векторы, то система собственных векторов матрицы станет ортонормированной, а матрица , столбцами которой будут эти векторы, станет ортогональной.

Ортогональной называется вещественная квадратная матрица, у которой соответствующая ей система векторов-столбцов является ортонормированной системой евклидова пространства.

Теорема. Матрица является ортогональной тогда и только тогда, когда .

В соответствии с этой теоремой , и преобразование эквивалентно преобразованию

При определении характеристических чисел матрицы было введено новое понятие характеристического многочлена. Подробный анализ понятия многочлена приводится в следующем разделе.