Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА ШПОРЫ.docx
Скачиваний:
12
Добавлен:
23.09.2019
Размер:
1.33 Mб
Скачать

6 Энергия гармонического осциллятора

Собственные незатухающие колебания возникают в системе при выполнении двух условий: во-первых, при смещении из положения равновесия должна возникать возвращающая сила, пропорциональная смещению (упругая или квазиупругая), и, во-вторых, в системе должны отсутствовать диссипативные силы.

Запустить колебание можно по-разному, но в любом случае эта операция означает сообщение системе некоторого запаса энергии. Далее в процессе колебания эта энергия будет переходить из потенциальной в кинетическую и обратно, но сумма этих энергий в любой момент времени должна быть неизменно равной начальной механической энергии.

Обратимся к конкретному осциллятору — пружинному маятнику.

Колебание груза массой m происходит по гармоническому закону:

x = a Cos (wt + a). (1)

Скорость груза меняется по закону синуса: (2)

Вычислим механическую энергию маятника в произвольный момент времени t:

Eмех = Ек + U.

Здесь: — кинетическая энергия груза,

U = — потенциальная энергия деформированной пружины.

(3)

(4)

В последнем выражении мы учли, что , то есть .

Кинетическая и потенциальная энергии осциллятора меняются с частотой, вдвое превышающей частоту колебаний маятника — w0 (рис. 2). И та и другая составляющие механической энергии осциллируют во времени. А их сумма?

(!). (5)

Их сумма остается неизменной в любой момент времени. Этот результат можно было бы предсказать a priori: ведь в процессе собственных незатухающих колебаний выполняется закон сохранения механической энергии.

Рис. 1

Легко видеть, что уравнение (5) выражает механическую энергию системы через максимальную кинетическую, когда потенциальная энергия равна нулю. В этот момент груз проходит с максимальной скоростью положение равновесия.

Но эту же механическую энергию можно связать и с максимальной потенциальной энергией — в точке амплитудного отклонения маятника, где v = 0 и Ек = 0.

(6)

Здесь k = , поэтому

.

Максимальная потенциальная энергия (Umax) незатухающего осциллятора равна его максимальной кинетической энергии и обе они равны полной механической энергии (Емех) системы, которая в процессе колебаний остается неизменной.

13(1).Дифференциальное уравнение затухающих механических колебаний и его решение.

Рассмотрим свободные затухающие колебания – колебания, у которых амплитуды из-за потерь энергии колебательной системой с течением времени убывают. Простейшим механизмом убывания энергии колебаний есть ее превращение в теплоту вследствие трения в механических колебательных системах, а также потерь, связанных с выделением теплоты, и излучения электромагнитной энергии в электрических колебательных системах.

Вид закономерностей затухания колебаний задается свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, параметры которых, определяющие физические свойства системы, в ходе процесса остаются неизменными. Например, линейными системами являются пружинный маятник при малых растяжениях пружины (когда выполняется закон Гука), колебательный контур, у которого сопротивление, индуктивность и емкость не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются аналогичными линейными дифференциальными уравнениями, что дает основания подходить к изучению колебаний различной физической природы с единой точки зрения, а также моделировать их, в том числе и на ЭВМ.

Дифференциальное уравнение свободных затухающих колебаний линейной системы определяется как

(1)

где s – колеблющаяся величина, которая описывает тот или иной физический процесс, d = const — коэффициент затухания, ωо - циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения (1) запишем в виде

(2)

где u=u(t). После взятия первой и второй производных (2) и подстановки их в выражение (1) найдем

(3)

Решение уравнения (3) зависит от знака коэффициента перед искомой величиной. Рассмотрим случай положителньного коэффициента:

(4)

(если ( )>0, то такое обозначение мы вправе сделать). Тогда получим выражение , у которого решение будет функция . Значит, решение уравнения (1) в случае малых затуханий ( )

(5)

где

(6)

— амплитуда затухающих колебаний, а Ао — начальная амплитуда. Выражение (5) представлено графики рис. 1 сплошной линией, а (6) — штриховыми линиями. Промежуток времени τ = 1/σ, в течение которого амплитуда затухающих колебаний становится мешьше в е раз, называется временем релаксации.