Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции.doc
Скачиваний:
74
Добавлен:
09.02.2015
Размер:
7.79 Mб
Скачать

1.5.3 Критерии качества измерений

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью и воспроизводимостью измерений, а также размером допустимых погрешностей.

Точность - это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины.Высокая точность измерений соответствует малым погрешностям как систематическим, так и случайным.

Точность количественно оценивают обратной величиной модуля относительной погрешности. Например, если погрешность измерений равна 10-6, то точность равна 106.

Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это даёт возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ с необходимой достоверностью.

Под правильностью измерений понимают качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Сходимость - это качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Сходимость измерений отражает влияние случайных погрешностей.

Воспроизводимость - это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, различными методами и средствами).

1.5.4 Планирование измерений

В простейшем случае планирование измерений сводится к нахождению оптимального числа измерений n набора величин X1,...Xn, а затем статистических характеристик:

среднего арифметического ,

где - среднее арифметическое выборки;- его доверительный интервал;

среднего квадратического выборки Sn » sn (n®¥).

Доверительный интервал, на величину которого истинное значение может отличаться от выборочного,

,

где tn-1 - табличный коэффициент Стьюдента, зависящий от доверительной вероятности Р и числа измерений (n-1). На практике выбирают: Р » 0,68, что соответствует ±1s; Р » 0,95 соответствует ±2s; Р » 0,997 соответствует ±3s.

Наибольшее число требуемых испытаний

,

где m - число предварительных экспериментов, заведомо меньшее, чем требуемое.

Таким образом, исходными, предварительно выбранными величинами при планировании измерений, являются: DX - максимальное допустимое отклонение среднего арифметического; Р - доверительная вероятность; m - число предварительных испытаний.

1.6 Выбор измерительного средства

Обоснованный выбор измерительного средства необходим как для метрологического, инженерного и научного эксперимента, так и для практической деятельности в условиях производства и оказания услуг.

Выбор метода измерений определяется принятой моделью ОИ и доступными СИ. Под методом измерений понимают прием или совокупность приемов сравнения измеряемой величины с ее единицей (или шкалой) в соответствии с реализованным принципом измерений.

При выборе метода измерений добиваются того, чтобы погрешность метода измерений, т.е. составляющая систематической погрешности измерений, обусловленная несовершенством принятых модели и метода измерений (иначе, теоретическая погрешность), не сказывалась заметно на результирующей погрешности измерения, т.е. не превышала 30 % от нее. Изменения измеряемых параметров модели в течение цикла наблюдений, как правило, не должны превышать 10 % от заданной погрешности измерения. Если возможны альтернативы, учитывают и экономические соображения: ненужное завышение точности модели и метода измерения приводят к необоснованным затратам. То же относится и к выбору СИ.

Выбор средств измерений и вспомогательных устройств определяется измеряемой величиной, принятым методом измерений и требуемой точностью результата измерений (нормами точности). Измерения с применением СИ недостаточной точности малоценны (даже бессмысленны), так как могут быть причиной неправильных выводов. Применение излишне точных СИ экономически невыгодно. Учитывают также диапазон изменений измеряемой величины, условия измерений, эксплуатационные качества СИ, их стоимость.

Основное внимание уделяют погрешностям СИ. При этом добиваются выполнения условия

DS = Dмод + Dм + DСИ + Dусл + Dо £ Dд ,

где Dд - предельно допускаемая погрешность результатов измерений;

предельные погрешности: Dмод - модели измерений, Dм - метода измерений; DСИ средства измерений, Dусл - дополнительные погрешности, обусловленные воздействием влияющих факторов условий измерений, Dо - оператора.

Этот критерий выбора СИ достаточно надежен, но дает завышенную на 20—30 % оценку суммарной погрешности измерения DS. Если такой запас по точности не допустим, суммирование составляющих DS следует произвести по формулам для случайных погрешностей.

Подготовка к измерениям и опробование средств измерений. При подготовке к измерениям оператор должен:

1. Подготовить ОИ (например, очистить) и создать необходимые (по НТД) условия измерений (испытаний) — установить в рабочее положение, включить питание, охлаждение, прогреть его необходимое время и т. п.

2. Опробовать СИ. Проверить действие органов управления, регулировки, настройки и коррекции. Если СИ снабжены средствами самокалибровки (тестирования), выполнить соответствующие операции.

3. Провести 2—3 пробных наблюдения и сравнить результаты с ожидаемыми. При непредвиденно большом расхождении результатов проанализовать причины и устранить их.

Контроль условий выполнения измерений. Сохранение метрологических характеристик СИ гарантируется для нормальных условий измерений (табл.2). Однако реальное проведение измерений в этих нормальных условиях маловероятно. Поэтому в эксплуатационной документации (ЭД) на СИ указывают пределы нормальной области значений влияющих величин, выходить за которые при выполнении измерений не допускается из-за возникновения дополнительной погрешности СИ. Рекомендуется выделить (определить) рабочее пространство, действием влияющих величин внутри которого можно пренебречь.

По госту 8.050 – 73 “Нормальные условия выполнения линейных и угловых измерений” и ГОСТу 8.395 - 80 “Нормальные условия измерений при поверке” предусмотрены пределы нормальной области значений влияющих величин, которые устанавливаются в зависимости от допусков и диапазона измеряемых размеров.

СИ влияющих величин выбирают такими, чтобы их погрешность не превышала 30 % от допустимых изменений влияющих величин.

Установление числа наблюдений при измерениях. Не следует отождествлять понятия "измерение" с "наблюдением при измерении" - экспериментальной операцией, выполняемой в процессе измерений, в результате которого получают одно значение величины (отсчета) - результата наблюдения, подлежащего обработке для получения результата измерения. Система этих понятий необходима для однозначного изложения измерительных процедур.

Таблица 2 - Номинальные значения влияющих физических величин

Влияющая величина

Номинальное значение величины

Температура для всех видов измерений

293 К (20оС)

Давление окружающего воздуха для измерения ионизирующих излучений, теплофизических, температурных, магнитных, электрических, давлений, параметров движения

100 кПа

(750 мм рт.ст.)

То же для остальных видов измерений

101,3 кПа

(760 мм рт. ст.)

Относительная влажность воздуха для измерений: линейных, угловых, массы и спектроскопии

58 %

То же для измерений электрического сопротивления

55 %

То же для измерений температуры, силы, твердости, переменного электрического тока, ионизирующих излучений, параметров движения

65 %

То же, для остальных видов измерений

60 %

Плотность воздуха

1,2 кг/м3

Ускорение свободного падения

9,8 м/с2

Магнитная индукция (например, магнитного поля) и напряженность электростатического поля для измерений параметров движения, магнитных и электрических величин

0

То же для остальных видов измерений

Соответствует характеристикам поля Земли в данном районе

Различают измерения с однократными и многократными наблюдениями. Наиболее распространены (в производстве) измерения с однократными наблюдениями.

Случайную погрешность считают пренебрежимо малой по сравнению с неисключенным остатком систематической погрешности (НСП), если Q/S(x) > 8, где Q - граница НСП результата измерения: S(x) – среднее квадратическое отклонение (СКО) отдельных наблюдений.

Иногда для повышения надежности таких измерений (исключения промахов) делают все-таки два или три наблюдения, и за результат измерения принимают среднее арифметическое значение результатов этих наблюдений.

Измерение с числом наблюдений n ³ 4 относят (условно) к измерениям с многократными наблюдениями и выполняют статистическую обработку ряда результатов наблюдений для получения информации о результате измерений и о случайной составляющей погрешности этого результата. При увеличении n СКО случайной погрешности результата измерений уменьшается по закону обратной пропорциональности. Этим руководствуются при выборе n для разумного уменьшения , например, по сравнению с НСП результата измерений Q, не зависящей от n (до выполнения условия Q/³ 8, дальнейшее увеличение n не имеет смысла). Как правило, выбор числа наблюдений производится при разработке МВИ. Определение количества измерений приведено в п .15.4.

Учет систематических погрешностей и способы их уменьшения. Систематические погрешности, как правило, не проявляются при выполнении наблюдений и вычислении результатов измерений, но способны существенно исказить эти результаты.

При разработке СИ и МВИ, т.е. еще до начала измерений систематические погрешности более или менее полно исключаются (например, введением аддитивных и мультипликативных поправок). Поэтому при выполнении наблюдений и оценке результатов измерений имеют дело с неисключенными остатками систематических погрешностей - НСП. Систематическую погрешность в данном разделе необходимо понимать именно как неисключенную систематическую погрешность (НСП) .

Для уменьшения (исключения) НСП в ходе выполнения измерений применяются следующие методы (приемы):

1. Метод замещения. Его суть - замена измеряемой величины известной (мерой), притом так, чтобы в состоянии и действии всех используемых СИ не происходило никаких изменений.

2. Метод противопоставления. Измерение выполняется с двумя наблюдениями, проводимыми так, чтобы причина НСП оказывала разные, но известные по закономерности воздействия на результаты наблюдений.

3. Метод компенсации погрешности по знаку предусматривает измерение с двумя наблюдениями, выполняемыми так, чтобы НСП входила в результат каждого из них с разными знаками.

4. Метод рандомизации (перевода систематической погрешности в случайную) заключается в такой организации измерений, при которой фактор, вызывающий НСП, при каждом наблюдении действует по-разному.

5. Метод симметричных наблюдений применяется для устранения прогрессирующих систематических погрешностей, линейно меняющихся пропорционально времени. Используют следующее свойство любых двух наблюдений, симметричных относительно средней точки интервала наблюдений: среднее значение линейно прогрессирующей погрешности результатов любой пары симметричных наблюдений равно погрешности, соответствующей средней точке интервала. Ряд наблюдений выполняют через равные промежутки времени и вычисляют средние арифметические значения результатов симметрично расположенных наблюдений (симметрично относительно среднего по времени наблюдения).