Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биохимия теория.docx
Скачиваний:
93
Добавлен:
21.09.2022
Размер:
3.47 Mб
Скачать

43. Водорастворимые витамины группы b (b1, b2, b3, b6, b12).

Ответ. Витамин В1 (тиамин, антиневритный). Источники. Черный хлеб, злаки, горох, фасоль, мясо, дрожжи. Суточная потребность 2,0-3,0 мг. В составе тиамина определяется пиримидиновое кольцо, соединенное с тиазоловым кольцом. Коферментной формой витамина является тиаминдифосфат. Входит в состав тиаминдифосфата (ТДФ), который является коферментом транскетолазы - фермента пентозофосфатного пути; входит в состав ферментов декарбоксилирования α-кетокислот пируватдегидрогеназы и α-кетоглутаратдегидрогеназы, которые участвуют в энергетическом обмене; входит в состав дегидрогеназы разветвленных α-кетокислот, необходимой для катаболизма лейцина, валина, изолейцина. Входит в состав тиаминтрифосфата, который изучен еще недостаточно. Имеются разрозненные сведения об участии ТТФ в передаче нервного импульса, в генерации клеточного сигнала, в реакциях клеточного биоэлектрогенеза, в регуляции активности ионных каналов. Болезнь "бери-бери" или "ножные кандалы" – нарушение метаболизма пищеварительной, сердечно-сосудистой и нервной систем из-за недостаточного энергетического и пластического обмена. В кишечнике имеется бактериальная тиаминаза, разрушающая тиамин. Также этот фермент активен в сырой рыбе, сырых устрицах. Пиритиамин, структурный аналог и антиметаболит тиамина, обнаружен в некоторых растениях (папоротник). Он конкурирует за переносчик тиамина на мембранах клеток: в кишечнике подавляет его всасывание, в тканях "вытесняет" витамин из клеток. Витамин В2 (рибофлавин, витамин роста). Источники. Достаточное количество содержат мясные продукты, печень, почки, молочные продукты, дрожжи. Также витамин образуется кишечными бактериями. Суточная потребность 2,0-2,5 мг. В состав рибофлавина входит флавин – изоаллоксазиновое кольцо с заместителями (азотистое основание) и спирт рибитол. Коферментные формы витамина дополнительно содержат либо только фосфорную кислоту – флавинмононуклеотид, либо фосфорную кислоту, дополнительно связанную с АМФ – флавинадениндинуклеотид. В кишечнике рибофлавин освобождается из состава пищевых ФМН и ФАД, и диффундирует в кровь. В слизистой кишечника и других тканях вновь образуется ФМН и ФАД. Кофермент оксидоредуктаз – обеспечивает перенос 2 атомов водорода в окислительно-восстановительных реакциях. Дегидрогеназы энергетического обмена – пируватдегидрогеназа (окисление пировиноградной кислоты), α-кетоглутаратдегидрогеназа и сукцинатдегидрогеназа (цикл трикарбоновых кислот), ацил-SКоА-дегидрогеназа (окисление жирных кислот), митохондриальная α-глицеролфосфатдегидрогеназа (челночная система). Оксидазы, окисляющие субстраты с участием молекулярного кислорода. Например, прямое окислительное дезаминирование аминокислот или обезвреживание биогенных аминов (гистамин, ГАМК). Антивитамины В2. Акрихин (атебрин) – ингибирует функцию рибофлавина у простейших. Используется при лечении малярии, кожного лейшманиоза, трихомониаза, гельминтозов (лямблиоз, тениидоз). Мегафен – тормозит образование ФАД в нервной ткани, используется как седативное средство. Токсофлавин – конкурентный ингибитор флавиновых дегидрогеназ. Витамин В3 (PP, ниацин, антипеллагрический). Хорошим источником являются печень, мясо, рыба, бобовые, гречка, черный хлеб. В молоке и яйцах витамина мало. Также синтезируется в организме из триптофана – одна из 60 молекул триптофана превращается в одну молекулу витамина. Таким образом, можно считать, что 60 мг триптофана равноценны примерно 1 мг никотинамида. Если принять, что физиологическая норма потребления триптофана составляет 1 г, то в организме образуется около 17 мг никотинамида в сутки. Суточная потребность 15-25 мг. Витамин существует в виде никотиновой кислоты или никотинамида. Его коферментными формами являются никотинамидадениндинуклеотид (НАД) и фосфорилированная по рибозе форма – никотинамидадениндинуклеотидфосфат (НАДФ). Биохимические функции. Перенос гидрид-ионов Н– (атом водорода и электрон) в окислительно-восстановительных реакциях. Благодаря переносу гидрид-иона витамин обеспечивает следующие задачи. Метаболизм белков, жиров и углеводов. Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях при синтезе и окислении карбоновых кислот, при синтезе холестерола, обмена глутаминовой кислоты и других аминокислот, обмена углеводов: пентозофосфатный путь, гликолиз, окислительного декарбоксилирования пировиноградной кислоты, цикла трикарбоновых кислот. НАДН выполняет регулирующую функцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот. Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК. Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки. НАДФН участвует в реакциях ресинтеза тетрагидрофолиевой кислоты (кофермент витамина B9) из дигидрофолиевой после синтеза тимидилмонофосфата, восстановления белка тиоредоксина при синтезе дезоксирибонуклеотидов, для активации "пищевого" витамина К или восстановления тиоредоксина после реактивации витамина К. Антивитамины. Производное изоникотиновой кислоты изониазид, используемый для лечения туберкулеза. Механизм действия точно не выяснен, но по одной из гипотез – замена никотиновой кислоты в реакциях синтеза никотинамидаденин-динуклеотида (изо-НАД вместо НАД). В результате нарушается протекание окислительно-восстановительных реакций и подавляется синтез миколевой кислоты, структурного элемента клеточной стенки микобактерий туберкулеза. Витамин В6 (пиридоксин, антидерматитный). Витамином богаты злаки, бобовые, дрожжи, печень, почки, мясо, также синтезируется кишечными бактериями. Суточная потребность 1,5-2,0 мг. Витамин существует в виде пиридоксина. Его коферментными формами являются пиридоксальфосфат и пиридоксаминфосфат. Является коферментом фосфорилазы гликогена (50% всего витамина находится в мышцах), участвует в синтезе гема, сфинголипидов. Наиболее известная функция пиридоксиновых коферментов – перенос аминогрупп и карбоксильных групп в реакциях метаболизма аминокислот: кофермент декарбоксилаз, участвующих в синтезе биогенных аминов из аминокислот – серотонина, гамма-аминомасляной кислоты (ГАМК), гистамина, кофермент аминотрансфераз, переносящих аминогруппы между аминокислотами и кетокислотами (механизм реакции трансаминирования с участием пиридоксальфосфата показан здесь), реакция трансаминирования. Витамин В12 (кобаламин, антианемический). Из пищевых продуктов витамин содержат только животные продукты: печень, рыба, почки, мясо. Также он синтезируется кишечной микрофлорой, однако не доказана возможность всасывания витамина в нижних отделах ЖКТ. Суточная потребность 2,5-5,0 мкг. Содержит 4 пиррольных кольца, ион кобальта (с валентностью от Co3+ до Co6+), группу CN–. В организме при синтезе коферментных форм цианидная группа CN– заменяется метильной или 5'-дезоксиаденозильной. Для всасывания в кишечнике необходим внутренний фактор Касла – гликопротеин, синтезируемый обкладочными клетками желудка. Комплекс "витамин В12+внутренний фактор" медленно всасывается в подвздошной кишке. В крови витамин транспортируется в виде гидроксикобаламина вместе с транскобаламином и транспортными белками (α- и β-глобулинами). Витамин В12 участвует в двух видах реакций – реакции изомеризации и метилирования. Основой изомеризующего действия витамина В12 является возможность способствовать переносу атома водорода на атом углерода в обмен на какую-либо группу. Эта функция имеет значение в процессе окисления остатков жирных кислот с нечетным числом атомов углерода, на последних реакциях утилизации углеродного скелета валина, лейцина, изолейцина, треонина, метионина, боковой цепи холестерола. В результате этих реакций образуется метилмалонил-SКоА, который при участии витамина В12 превращается в сукцинил-SКоА и в дальнейшем сгорает в цикле трикарбоновых кислот. Участие в трансметилировании аминокислоты гомоцистеина при синтезе метионина. Метионин в дальнейшем активируется и используется для синтеза адреналина, креатина, карнитина, холина, фосфатидилхолина и др.

Соседние файлы в предмете Биохимия