Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биохимия теория.docx
Скачиваний:
93
Добавлен:
21.09.2022
Размер:
3.47 Mб
Скачать

52. Окисление жирных кислот с нечетным числом углеродных атомов.

Ответ. Основная масса природных липидов содержит жирные кислоты с четным числом углеродных атомов, однако в липидах многих растений и некоторых морских организмов присутствуют жирные кислоты с нечетным числом атомов углерода. Установлено, что жирные кислоты с нечетным числом углеродных атомов окисляются таким же образом, как и жирные кислоты с четным числом углеродных атомов, с той лишь разницей, что на последнем этапе расщепления (β-окисления) образуется одна молекула пропионил-КоА и одна молекула ацетил-КоА, а не 2 молекулы ацетил-КоА в случае β-окисления жирных кислот с четным числом углеродных атомов. Пропионил-КоА, являющийся одним из конечных продуктов β-окисления жирных кислот с нечетным числом углеродных атомов, превращается в сукцинилКоА путем двух последовательных реакций. Реакция карбоксилирования пропионила. Но при прохождении всех этих реакций сукцинил-КоА до ЩУК по циклу Кребса не происходит полного окисления до СО2 и Н2О. Для этого образовавшийся оксалоацетат через ряд последовательных реакций превращается в ацетил-КоА, который поступая в цикл Кребса, полностью «сгорает» до СО2, Н2О и выделением энергии. Образовавшийся оксалоацетат локализован в митохондрии. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же в митохондрии восстанавливается в малат (яблочная кислота). Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. Образовавшийся малат, легко выходит из митохондрии в цитозоль клетки и вновь окисляется в оксалоацетат при участии цитоплазматической НАДзависимой малатдегидрогеназы: Образовавшийся фосфоенолпируват (ФЕП) по пути гликолиза превращается в ПВК, а пируват в результате окислительного декарбоксилирования в ацетил-КоА, который поступая в цикл Кребса, полностью окисляется до СО2 и Н2О, с выделением энергии. С учетом выше сказанного, видно, что образовавшийся пропионил, в конечном счете, должен превратиться в ацетил-КоА и окислиться в цикле Кребса. Таким образом, все жирные кислоты в результате β-окисления превращаются в ацетил-КоА, который сгорает в цикле Кребса (этап IV).

53. Биосинтез жирных кислот.

Ответ. Высшие ЖК могут быть синтезированы в организме из метаболитов углеводного обмена. Исходным соединением для этого биосинтеза является ацетил-КоА, образующийся в митохондриях из пирувата – продукта гликолитического распада глюкозы. Место синтеза жирных кислот – цитоплазма клеток, где имеется мультиферментный комплекс синтетаза высших жирных кислот. Этот комплекс состоит из 6 ферментов, связанных с ацилпереносящим белком. Конечным продуктом является пальмитиновая кислота. Начальной реакцией синтеза ЖК является карбоксилирование ацетил-КоА с образованием малонил-КоА. Фермент ацетил-КоА-карбоксилаза активируется цитратом и ингибируется КоА-производными ВЖК.

Затем ацетил-КоА и малонил-КоА взаимод. с SH-группами ацилпереносящего белка.

Далее происходит их конденсация, декарбоксилирование и восстановление образовавшегося продукта.

Продукт реакции взаимодействует с новой молекулой малонил-КоА и цикл многократно повторяется вплоть до образования остатка пальмитиновой кислоты. Основные особенности биосинтеза ЖК по сравнению с β-окислением: синтез жирных кислот идёт в цитоплазме клетки, а окисление – в митохондриях; участие в процессе связывания СО2 с ацетил-КоА; в синтезе ЖК принимает участие ацилпереносящий белок, а в окислении – коэнзим А; для биосинтеза ЖК необходимы окислительно-восстановительные коферменты НАДФН, а для β-окисления – НАД+ и ФАД.

54. Реакции глюконеогенеза.

Ответ. Глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата, пирувата, глицерола, кетокислот цикла Кребса и других кетокислот, из аминокислот. Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них – глюкогенных – полностью включаются в молекулу глюкозы, некоторых – смешанных – частично. Кроме получения глюкозы, глюконеогенез обеспечивает и уборку "шлаков" – лактата, постоянно образуемого в эритроцитах или при мышечной работе, и глицерола, являющегося продуктом липолиза в жировой ткани.

55. Глиоксилатный путь, его роль у растений.

Ответ. Глиоксилатный цикл— циклический ферментативный процесс, являющийся видоизмененной формой цикла трикарбоновых кислот; осуществляет превращение активной формы уксусной кислоты (ацетил-КоА) в ди- и трикарбоновые кислоты через стадию образования глиоксиловой кислоты. Цикл функционирует у микроорганизмов, плесневых грибов, водорослей и высших растений, но отсутствует у животных, т.к. в клетках животных отсутствуют изоцитратлиаза и малат-синтаза, выход 8 АТФ.

56. Реакции трансаминирования, их биологическая роль.

Ответ. Трансаминирование – реакции переноса альфа-аминогруппы с аминокислоты на альфа-кетокислоту, в результате чего образуются новая кетокислота и новая аминонокислота. Реакции катализируют ферменты аминотрансферазы. Это сложные ферменты, коферментом которых является производное витамина В6 – пиридоксальфосфат, который обратимо может переходить в пиридоксаминфосфат. Реакции трансаминирования обратимы, и могут проходить как в цитоплазме, так и в митохондриях клеток. В клетках человека найдено более 10 аминотрансфераз, отличающихся по субстратной специфичности. Вступать в реакции трансаминирования могут почти все аминокислоты, за исключением лизина, треонина и пролина. Реакции трансаминирования протекают в 2 стадии. На первой стадии к пиридоксальфосфату в активном центре фермента присоединяется аминогруппа от первого субстрата – аминокислоты. Образуется комплекс фермент- пиридоксаминфосфат и кетокислота – первый продукт реакции. Этот процесс включает промежуточное образование 2 шиффовых оснований (альдимин и кетимин). На второй стадии пиридоксаминфосфат соединяется с новой кетокислотой (второй субстрат) и снова через промежуточное образование 2 шиффовых оснований передает аминогруппу на кетокислоту. В результате фермент возвращается в свою нативную форму, и образуется новая аминокислота – второй продукт реакции.

Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных – глутамат, аланин, аспартат. Наиболее распространенными в большинстве тканей являются аланинаминотрансфераза (АлАТ) и аспартатаминотрансфераза (АсАТ). Наибольшая активность АсАТ обнаруживается в клетках сердечной мышцы и печени, в то время как в крови обнаруживается только фоновая активность АлАТ и АсАТ. Поэтому можно говорить об органоспецифичности этих ферментов, что позволяет их широко примененятьих с диагностической целью (при инфарктах миокарда и гепатитах). Трансаминирование – первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование – заключительный этап синтеза заменимых аминокислот из соответствующих кетокислот, если они необходимы в данный момент клеткам. В результате происходит перераспределение аминнного азота в тканях. При трансаминированиии общее количество аминокислот в клетке не меняется. Оксидазы D-аминокислот. При физиологических значениях рН в тканях высоко активны оксидазы D-аминокислот. Они также обнаружены в почках и печени и находятся в микросомах. Роль оксидаз D-аминокислот невелика и до конца не понятна, потому что в белки пищи и тканей человека входят только природные L-аминокислоты. В печени человека присутствуют специфические ферменты, катализирующие реакции дезаминирования серина, треонина, цистеина и гистидина неокислительным путем.

Соседние файлы в предмете Биохимия