Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OKSIPROIZVODN_Ye_UGLYeVODORODOV.doc
Скачиваний:
202
Добавлен:
11.02.2015
Размер:
2.18 Mб
Скачать

3.4 Простые эфиры

Простые эфиры можно рассматривать как производные спиртов и фенолов, в которых атом водорода гидроксильной группы замещен угле­водородным остатком. Общая формула простого эфира R–О–R1. В тех случаях, когда с атомом кислорода связаны различные углеводородные остатки, простой эфир называют смешанным, одинаковые остатки – симметричным. В зависимости от природы углеводородного радикада простые эфиры подразделяются на:

  • простые эфиры с открытой цепью;

  • циклические;

  • насыщенные;

  • ненасыщенные;

  • ароматические и т. д.

По названиям углеводородных остатков составляют название простого эфира. Примеры простых эфиров и их названий приведены в таблице 14.

Таблица 14 – Классификация и номенклатура простых эфиров

Формула

Название

Класс

СН3–О–СН3

диметиловый эфир

метоксиметан

предельный симметричный

С2Н5–О–С2Н5

диэтиловый эфир

этоксиэтан

предельный симметричный

СН3–О–СН(СН3)2

метилизопропиловый эфир

2-метоксипропан

предельный смешанный

СН3–О–С6Н5

метилфениловыйэфир

метоксибензол

анилзол

жирно-ароматический смешанный

СН2=СН–О–С2Н5

винилэтиловый эфир

непредельный смешанный

алкеноксид

циклический эпоксид оксиран

1,4-диоксан

циклический

тетрагидрофуран

циклический

Способы получения простых эфиров

  1. Реакция галогенопроизводных углеводородов с алкоголятами – реакция Вильямсона. В качестве алкилирующих средств в этом синтезе могут быть использованы алкилгалогениды и диалкилсульфаты. Вследствие возможного протекания конкурирующей реакции элиминирования этот способ более пригоден для первичных субстратов и практически не используется для третичных:

  1. Дегидратация спиртов под влиянием кислот. Метод для получения симметричных простых эфиров из первичных спиртов или смешанных эфиров из первичного и третичного спиртов:

  1. Присоединение спиртов к алкинам приводит к образованию виниловых эфиров:

4. Окисление алкенов. Мягкое окисление алкенов надкислотами или кислородом в присутствии серебряного катализатора приводит к образованию трехчленных циклических простых эфиров – оксиранов (эпоксидов) (часть 1, глава 8.2).

Физические свойства простых эфиров. Неспособность молекул простых эфиров образовывать водородные связи делает эти соединения более легколетучими по сравнению со спиртами с близкой молекулярной массой. В смесях с оксисодержащими соединениями, в частности, с водой, простые эфиры образуют водородные связи за счет атома кислорода как донора пары электронов, поэтому низшие эфиры ограниченно растворимы в воде. Циклические простые эфиры, имея более доступный для сольватации атом кислорода, образуют более прочные водородные связи, поэтому они хорошо растворимы в воде (таблица 15).

Таблица 15 – Физические свойства простых эфиров

Формула

Название

Мол. масса

Температура, °С

Растворимость в воде

г/100 г

плавления

кипения

Диэтиловый эфир

74

–116

35

7,5

Ди (н-пропиловый) эфир

100

–122

90

8

Тетрагидрофуран

72

–108

66

Растворим

Продолжение таблицы 15

Диоксан

88

12

101

Неограниченно

Эпоксиэтан, окись этилена

44

–112

11

Неограниченно

Эпоксипропан, окись пропилена

58

–112

34

Растворим

Химические свойства простых эфиров. Простые эфиры – один из немногих классов органических соединений, обладающих невысокой реакционной способностью. В отличие от спиртов простые эфиры, не имея гидрофильного водорода, не проявляют кислотных свойств, однако остальные типы реакций, характерные для спиртов, присущи и простым эфирам:

  • Наличие в молекулах простых эфиров на атоме кислорода НЭП определяет их способность участвовать в реакциях в качестве оснований.

  • Вследствие большей электроотрицательности атома кислорода по сравнению с атомом углерода связь Сδ+–Оδ– в простых эфирах подобно связи С–О в спиртах полярна. На углеродном атоме имеется дефицит электронов, что делает возможной нуклеофильную атаку по этому атому с разрывом простой эфирной связи. Однако этот процесс расщепления простого эфира невыгоден по двум причинам:

  • вследствие электронодонорных свойств углеводородных заместителей, полярность связи С–О невелика;

  • алкокси-анион, так же как и гидрокси-анион, невыгодная уходящая группа (богата энергией), поскольку в ней нет условий для эффективной делокализации отрицательного заряда.

Следовательно, большинство простых эфиров – довольно инертные химические соединения. Они устойчивы к действию водных растворов кислот, щелочей. Простые эфиры могут расщепляться только некоторыми реагентами, например, при нагревании с концентрированной йодистоводородной кислотой или под действием металлического натрия при повышенной температуре.

1. Основные свойства. Обладая электронной парой на атоме кислорода, простые эфиры могут образовывать координационные комплексы с различными протонными или апротонными кислотами. Однако поскольку атом кислорода обладает довольно высокой электроотрицательностью и стерически мало доступен, он является слабым донором электронной пары. Вследствие этого простые эфиры – слабые основания. Они могут образовывать соли только с сильными кислотами (Н–кислоты и кислоты Льюиса) и в отсутствие воды.

1.1 Взаимодействие с концентрированной серной кислотой. Простые эфиры протонируются, давая растворы оксониевых солей:

В водной среде оксониевые соли легко гидролизуются, регенерируя при этом исходные эфир и кислоту.

1.2 Взаимодействие с кислотами Льюиса. Эфиры посредством семиполярной связи образуют комплексы:

2. Реакции нуклеофильного замещения. Необходимыми условиями для расщепления простой эфирной связи является наличие сильного нуклеофила и перевод алкокси-аниона в выгодную уходящую группу. Последнее может быть достигнуто, если SN реакцию осуществлять с оксониевой солью эфира, т. е. в присутствии сильной кислоты.

Реакция SN у простых эфиров идет еще труднее, чем у спиртов, т. к. группа RO является плохой уходящей группой. Однако в кислой среде в результате протонирования по кислороду она превращается в несколько лучшую уходящую группу ROH и нуклеофильное замещение становится возможным.

Природа углеводородного радикала определяет в таких случаях, какой из механизмов – SN1 или SN2 – реализуется, причем закономерности здесь такие же, как в случае алкилгалогенидов. В качестве кислот, катализирующих реакции нуклеофильного замещения простых эфиров, обычно используют HI, H2SO4, НВr.

В данном случае образуется исключительно фенол, так как связь прочнее по сравнению, и последняя разрывается легче.

3. Отщепление (элиминирование) для простых эфиров, аналогично спиртам, можно осуществить действием сильных кислот, в частности, серной кислоты:

Реакции простых эфиров Е2 типа можно осуществить действием очень сильных оснований, в частности, алкилпроизводных щелочных металлов:

3.1 Расщепление простых эфиров при высоких темепратурах активными металлами (Шорыгин, 1910 г.):

4. Окисление простых эфиров идет легко по С–Н связи кислородом воздуха на свету, поэтому их хранят в темных (светонепроницаемых) емкостях. При длительном хранении в присутствии кислорода воздуха на свету у алифатических эфиров происходит свободнорадикальный процесс окисления, приводящий к образованию неустойчивых пероксидов.

Автоокисление эфиров протекает у α-углеродного атома, поскольку в качестве интермедиатов в этом случае выступают свободные радикалы, стабилизированные делокализацией неспаренного электрона с участием НЭП атома кислорода:

Триплетный

кислород

Синглетный

кислород

Работа с простыми эфирами, не освобожденными от перекисей, требует особой осторожности. Остаток после перегонки может содержать опасные в отношении взрыва концентрации перекисей. Эфиры, очищенные от перекисей, хранят, как правило, над металлическим натрием или гидридом кальция.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]