Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по котлам.doc
Скачиваний:
1800
Добавлен:
01.04.2015
Размер:
10.19 Mб
Скачать

9.1.2.Гидравлическая характеристика горизонтальных одиночных труб.

Полное гидравлическое сопротивление трубы Δp или какого-либо другого участка элемента представляет собой сумму сопротивления трения ΔpТР, местного ΔpМ, ускорения Δpуски нивелирного напора ΔpНИВ(см.гл. 8) (9.19)

(9.19)

Сопротивление трения и местное сопротивление в явном виде зависят от скорости потока w или ρw, поэтому их сумму называют гидравлическим сопротивлением Δpг. Тогда (9.19) можно записать (9.20)

(9.20)

Для горизонтальных труб ΔpНИВ= 0. Рассмотрим гидравлические характеристики необогреваемых и обогреваемых горизонтальных труб.

Гидравлическая характеристика горизонтальных необогреваемых труб

В паровых котлах необогреваемыми являются трубы, по которым подается вода к экономайзеру, перепускные трубы между поверхностями нагрева, опускные трубы в контурах естественной циркуляции, пароотводящие трубы. В этих трубах движется как однофазный поток (вода, пар), так и двухфазный поток (пароводяная смесь).

Для необогреваемых труб (изотермического потока) Δpуск= 0 и гидравлическое сопротивление (9.20)

(9.21)

Для однофазного потока (9.22)

(9.22)

Выразим скорость среды w через расход G

поскольку ρv= 1.

Подставляем полученное выражение в (9.22) и получаем зависимость для гидравлической характеристики (9.23)

(9.23)

где R-приведенный коэффициент сопротивления:

(9.24)

Для изотермического однофазного потока в трубе удельный объем v = const, поэтому графики гидравлической характеристики имеют квадратичную зависимость (рис.9.3) в области жидкости (vВ≤ v', кривые 3 и 4) и пара (vП≥ v", кривые 1 и 2). Так как в этом случае для каждой из кривой определенному перепаду давления Δp1соответствует только один расход среды, то такие характеристики называютсяоднозначнымиилиустойчивыми.

Для двухфазного адиабатного потока были получены формулы (9.25) и (9.26) (см.§ 8.4)

(9.25)

(9.26)

При х = const и ψ = const гидравлическая характеристика однозначна и квадратична (кривая 5 на рис.9.3). В действительности при увеличении скорости потока коэффициент ψ уменьшается и при том же расходе G сопротивление трубы будет меньше (кривая 6).

Интересно рассмотреть случай, когда постоянным будет расход паровой фазы GПчерез трубу, а увеличивать расход среды G будем за счет подачи воды (жидкой фазы) GВ. Тогда G = GП+ GВ, а массовое паросодержание является переменной величиной х = GП/ G При GВ= 0, G = GП, x = 1 и гидравлическая характеристика однозначна (кривая 1 на рис.9.4). С увеличением расхода среды паросодержание уменьшается и сопротивление определим по преобразованной формуле (9.25)

(9.27)

При G → µ, x → 0, Δp → RG2/ρ, т.е. характеристика стремится к кривой 2 (рис.9.4). Полученные в результате расчета кривые 3 и 4 показывают, что в этом случае гидравлическая характеристика может быть однозначной (кривая 3) или многозначной (кривая 4).

Гидравлическая характеристика горизонтальных обогреваемых труб

Для упрощения задачи возьмем горизонтальную трубу без местных сопротивлений ( ΔpМ= 0), будем считать, что сопротивление ускорения мало, Δpуск= 0. Тогда полное гидравлическое сопротивление будет равно сопротивлению трения, Δp = ΔpТР.

Горизонтальная труба (рис.9.5) длиной l, м, и с внутренним диаметром d, м, равномерно обогреваются, тепловой поток на 1 м длины трубыql, кВт/м. На вход трубы подается вода, недогретая до кипения (hВХ< h'). На экономайзерном участке вода нагревается до энтальпии кипения и затем начинает испаряться; на выходе из трубы - пароводяная смесь с xВЫХ.

Длина экономайзерного участка определится из уравнения теплового баланса

(9.28)

(9.29)

Длина экономайзерного участка при G и q1= const зависит от недогрева воды на входе до кипения Δhнед=h' - hВХ.

Длина испарительного участка lИСП=l - lЭК,или по тепловому балансу

(9.30)

Учитывая разное фазовое состояние на участках, сопротивление трения в трубе представим как сумму сопротивлений на экономайзерном ΔрЭКи испарительном ΔрИСПучастках

Δр = ΔрТР= ΔрЭК+ ΔрИСП

Сопротивление на экономайзерном участке при длине lЭКпо (9.29)

(9.31)

Получилась кубическая зависимость, так как lЭКзависит от расхода G.

При небольшом недогреве Δhнедможно принять без предварительного расчета.

Сопротивление на испарительном участке

(9.33)

На испарительном участке удельный объем изменяется существенно, и, в общем виде, есть среднеинтегральная величина. Возьмем первое, линейное, приближение

(9.34)

В выходном сечении массовое паросодержание

(9.35)

Подставляя в (9.34) выражения для хВЫХ(9.35) и затем дляlЭК(9.29), получаем

(9.36)

Введем обозначение

(9.37)

Подставляем в (9.31) зависимости (9.32) и (9.33) с учетом (9.29), (9.36) и проводим перегруппировку членов формулы. В результате получаем

(9.38)

где

(9.39)

(9.40)

(9.41)

Таким образом, гидравлическая характеристика обогреваемой горизонтальной трубы при движении двухфазного потока с недогревом выражается уравнением третьей степени (9.38).

Решение уравнения третьей степени может иметь один действительный и два мнимых корня (кривая 7, рис.9.6) или все три действительных корня (кривая 2, рис.9.6). В первом случае имеем однозначную характеристику; во втором случае кривая имеет точку перегиба и два экстремума, а перепаду давления Δp0отвечают три расхода среды: G1, G2и G3Такая характеристика называетсямногозначной. Проведя горизонтали через точку минимума и максимума кривой 2, получим диапазон неоднозначности по расходу (GМИН…GМАКС) и сопротивлению (ΔpМИН…ΔpМАКС). Вне этого диапазона кривые однозначны.

При малых расходах (G < G МИН) длины экономайзерного и испарительного участков уменьшаются и может появиться перегревательный участок, причем с уменьшением G доля его возрастет, кривая 2 при этом приближается к гидравлической характеристике при прохождении через трубу перегретого пара (кривая 3, рис.9.6). При больших расходах среды (G > GМАКС), наоборот, длины экономайзерного и испарительного участков растут, затем испарительный участок исчезает, и сопротивление определяется однофазным потоком недогретой до кипения жидкости (кривая 4). В области неоднозначности расхода (СМИН- GМАКС) длина экономайзерного участка увеличивается, а испарительного - уменьшается, снижается также массовое паросодержание х за счет уменьшения парообразования (lИСПи GПуменьшаются) и увеличения расхода жидкой фазы.

Нестабильность гидравлической характеристики опасна тем, что в параллельных трубах, находящихся практически в одинаковых условиях, расход среды может быть различным (G 1и G3, рис.9.6), паросодержание в них будет значительно различаться и возможно возникновение кризиса теплообмена. Кроме того, расходы через трубы могут изменяться самопроизвольно (G1или G3), возникает пульсация потока во всем элементе, колебания температуры стенки. Все это может закончиться повреждением труб. Такие режимы недопустимы.

Выявим область неоднозначности. Для этого возьмем производную кубического уравнения по расходу dΔp/dG и определим точки экстремума

(9.42)

Точки экстремума

(9.43)

Зная комплексы А, В и С, определяем точки G'ЭКСТР, а по ним значения ΔpМИНи ΔpМАКС

Формулу (9.43) можно использовать для нахождения параметров, при которых характеристика будет однозначной. Для этого необходимо, чтобы точки экстремума отсутствовали в положительной области G: были мнимыми или отрицательными.

В первом случае должно выполняться условие

В2- ЗАС < 0, т.е. В2< ЗАС.

(9.44)

Второе условие (G ЭКСР< 0) возможно выполнить при В > 0 (в зависимости от D hнедкомплекс В может быть как положительным, так и отрицательным).

Из этих двух условий вытекает одно условие

(9.45)

при котором гидравлическая характеристика горизонтальной трубы будет однозначна (рис 9.7).

При р = 11 МПа недогрев должен быть меньше 961 кДж/кг (h' = 1451 кДж/кг), при p = 16 МПа Δhнед< 1558 кДж/кг (h' = 1651 кДж/кг). Этот параметр при высоком давлении не ограничивает выбор температуры на входе в горизонтальную одиночную трубу. При Δhнед= 0 коэффициент А = 0, В = R1lv'. С не зависит от недогрева, уравнение будет иметь вид

(9.46)

Пример.Оценим вклад слагаемых уравнения (9.46). Давление р = 16 МПа, v' = 0,00171 м3/кг, v" = 0,00933 м3/кг, r = 931,2 кДж/кг, примемl= 10 м, d = 20 мм, ql= 500 кВт/м2, пересчет ql= 500 πdl/l = 500 πd = 500π·0,020 =31,4 кВт/м. Формулу (9.46) запишем в виде

(9.47)

При ρw = 1000 кг/(м2·c) G = 0,314 кг/с , тогда

(9.48)

При G = 1 кг/с Δp/R1·l = 1,71·10-3+1,29·10-33·10-3

Расчет показывет, что вклад второго слагаемого в уравнении (9.46) с ростом G уменьшается и сопротивление трубы становится пропорционально квадрату расхода среды; коэффициент пропорциональности зависит от удельного объема воды v', длины трубы lи коэффициента гидравлического сопротивления R1(кривая 1, рис.9.8).

При Δh нед> 0 коэффициент А > 0, В уменьшается и график зависимости Δр = f(G) изменяет форму (кривая 2); при Δhнед> 7,46 rv'/(v"- v') график становится многозначным (кривая 3).

Влияние конструктивных и режимных факторов на гидравлическую характеристику горизонтальных необогреваемых и обогреваемых труб

В горизонтальных необогреваемых трубах при течении однофазного потока (вода, пар) гидравлическая характеристика однозначна. Конструктивное выполнение труб (длина, диаметр, суммарное сечение труб, гибы) влияет на величину гидравлического сопротивления, но не изменяет вид гидравлической характеристики.

При течении пароводяной смеси в горизонтальных необогреваемых трубах на гидравлическую характеристику оказывает влияние не только конструктивные, но и режимные параметры: при изменении нагрузки котла изменяется массовое паросодержание и скорость потока, что ведет к изменению вида гидравлической характеристики (см. рис.9.4). Кроме того, при движении в горизонтальных трубах двухфазного потока возможно его расслоение на жидкую и паровую фазы.

Расслоенный режим течения не желателен и в необогреваемых трубах.

На гидравлическую характеристику горизонтальных обогреваемых труб существенное влияние оказывают такие факторы, как давление среды, интенсивность обогрева, местное сопротивление, ускорение потока.

Влияние давленияпроявляется через удельный объем на экономайзерном участке v' и комплекса= (v" - v')/r, характеризующий изменение объема воды при испарении (v" - v') на единицу приращения энтальпии r. С ростом давления комплексауменьшается: р = 11 МПа,а= 11,5·10-6м3/кДж, р = 18 МПа,а= 7,29·10-6м3/кДж. Гидравлическая характеристика при этом становится более стабильной (рис.9.9, давления р1< р2< р3). При сверхкритическом давлении среды в зоне больших теплоемкостей, где сильна зависимость удельного объема воды от энтальпии, гидравлическая характеристика может быть многозначной. Только при повышении давления (р4, р5- рис.9.9) до такого значения, где ЗБТ практически не выделима, гидравлическая характеристика будет стремиться к квадратичной зависимости р = R1·l·v·G2(кривая p6).

Увеличение теплового потокаqlприводит к уменьшению длины экономайзерного участкаlЭКи сопротивления ΔpЭК, к увеличению длиныlИСПи сопротивления ΔpИСПиспарительного участка. Увеличивается и суммарное гидравлическое сопротивление трубы (рис.9.10).

Зона неоднозначности с ростом ql, смещается в область более высоких расходов среды. Длина обогреваемой трубыlвлияет (качественно) на гидравлическую характеристику аналогично qlчисленное влияние сказывается более сильно, так как длина трубыlнепосредственно влияет на гидравлическое сопротивление в зонах двухфазного и однофазного потоков (рис.9.11).

В испарительных поверхностях нагрева местными сопротивлениямиявляются вход и выход трубы, гибы труб, дроссельные шайбы, устанавливаемые для регулирования распределения расхода среды между трубами. Расчет местного сопротивления проводится по формуле (9.26). Заменим скоростьwна расход среды G

(9.47)

где

(9.48)

Местное сопротивление на входе в трубу находится в зоне однофазного потока (жидкости). Зависимость ΔpМ = f(G2) однозначная. Этим свойством пользуются для изменения вида гидравлической характеристики трубы, устанавливают на входе в нее дроссельную шайбу с сопротивлением ΔpШ

(9.49)

где ξШ- коэффициент сопротивления шайбы.

При этом в кубическом уравнении (9.38) появится дополнительный член:

(9.50)

Характер зависимости Δp = f(G) с учетом сопротивления шайбы ΔpШизменится (рис.9.12). Путем выбора сопротивления шайбы можно многозначную характеристику трубы преобразовать в однозначную.

Наличие дополнительного сопротивления шайбы скажется на критерии однозначности (9.45):

(9.51)

Из формулы (9.51) можно рассчитать сопротивление шайбы, при котором однозначна характеристика трубы.

Местное сопротивление на выходе из трубы находится в двухфазном потоке, причем xВЫХзависит от расхода среды. Местное сопротивление на выходе из испарительной трубы отрицательно сказывается на однозначности гидравлической характеристики трубы, поэтому его надо уменьшать, дроссельную шайбу на выходе ставить нельзя (рис.9.13а).

Падение давления от ускорения потокаΔpУСКна экономайзерном участке практически равно 0 (vВХ= v'), а на испарительном участке можно рассчитать по формуле

(9.52)

Полученное выражение показывает, что

точка максимума G ЭКСТР= G1/2 Потери давления от ускорения потока увеличивают нестабильность (неоднозначность) гидравлической характеристики или могут сделать из однозначной многозначную характеристику (рис.9.13б).