Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lections.doc
Скачиваний:
239
Добавлен:
03.05.2015
Размер:
4.72 Mб
Скачать

Тепловое расширение

Отмечено, что деформация – полевой тензор, но если внешнее воздействие изотропно, а тело анизотропно, то деформация будет согласовываться со структурой кристалла. Пусть происходит однорядное изменение температуры (скалярное воздействие), тогда все компоненты тензора деформаций будет(в первом приближении) пропорциональны малому изменению температуры Δt

δij = αij Δt,

где коэффициенты теплового расширения αij – постоянные, образующие материальный тензор второго ранга,

α11 α12 α13

α21 α22 α23

α31 α32 α33.

Здесь α11, α22, α33 - главные коэффициенты теплового расширения вдоль осей x1, x2 ,x3.

Т. о. деформация по осям составит

δ11 = α11 Δt

δ22 = α22 Δt

δ33 = α33 Δt.

Важно отметить, что кристалл расширяется неодинаково вдоль трех главных осей. Если из кристалла вырезать шар, то в результате теплового расширения он превратится в трехосный эллипсоид.

5. Взаимная связь физических свойств и явлений в кристаллах

При описании свойств кристаллов обычно отдельные свойства и явления в них выделяются искусственно и рассматриваются независимо друг от друга. В действительности свойства кристаллов взаимосвязаны и при внешних воздействиях возникают несколько явлений переплетающихся друг с другом.

Так, при нагреве кристалла естественно происходит изменение его энтропии и теплового расширения, но при этом возникают термоупругие напряжения, а они, в свою очередь, вызывают электрическое поле вследствие пироэлектрического эффекта.

Воздействие электрического поля создает электрическую поляризацию, электростатический эффект, приводит к изменению размеров и механическим напряжением (обратный пьезоэлектрический эффект).

Одно и то же явление может быть вызвано разными воздействиями за счет разных свойств кристалла. Например, механическая деформация может быть связана с

- упругостью при механическом воздействии,

- пьезоэлектрическим эффектом под действием тока,

- тепловым расширением.

Таким образом от условий опыта зависит, что считать воздействием, а что – эффектом, так как свойства проявляются и могут быть использованы в сложном взаимодействии.

В некоторых случаях удается обобщить представления о взаимной связи физических свойств кристаллов. Обобщение сделано, например, для тепловых, механических и диэлектрических свойств диэлектрического кристалла. При этом необходимо соблюдать два условия: линейность процессов и их термодинамическая обратимость.

Выберем в качестве основных воздействий (независимых переменных) механическое напряжение Т, напряженность электрического поля E, температуру t и поместим их во внешние вершины треугольной диаграммы (рис. 14). Обусловленные этими воздействиями основные эффекты расположены в вершинах внутреннего треугольника. Обсудим их.

  1. Механическое напряжение T создает деформацию δ, подчиняющуюся при малых значениях Т и δ закону Гука. Эффекту деформации соответствует отрезок 1 на диаграмме.

  2. Воздействие электрического поля Е приводит к поляризации диэлектрика и создает электрическое смещение D (отрезок 2 на диаграмме).

  3. Изменение температуры dt, вызывает изменение энтропии dU:

dU=C/t · dt,

где С - теплоемкость.

Эта связь представлена отрезком 3.

В диаграмме все линии связей между вершинами треугольников имеют определенный смысл. Так прямые связи внешних вершин характеризуют:

Отрезок 4 – электромеханические эффекты;

Отрезок 5 – электротермические;

Отрезок 6 – термоупругие.

Связи между вершинами внутреннего треугольника соответствуют следующим эффектам:

Электрическая поляризация может привести к деформации кристалла путем электрострикции (связь 15) или изменить его температуру из-за выделения теплоты поляризации(связь 13); Линия 14 характеризует теплоту, выделяющуюся при механической деформации.

Рис. 14. Схема взаимной связи равновесных физических свойств кристалла.

Т - механическое напряжение, δ – механическая деформация, t – температура, U – энтропия, 1 – упругость, 2 – диэлектрическая проницаемость, 3 – теплоемкость, 4 – электромеханические эффекты, 5 – электротермические эффекты, 6 – термоупругие эффекты, 7 – прямой пьезоэлектрический эффект, 8 – пьезокалорический эффект, 9 – обратный пьезоэлектрический эффект, 10 – электрокалорический эффект, 11 - тепловое расширение, 12 – пироэлектрический эффект, 13 – теплота поляризации, 14 – теплота деформации, 15 - электрострикция.

Из диаграммы следует, что связи между воздействиями и эффектами могут быть и не прямыми. Так, деформация δ возникает не только непосредственно за счет внешнего механического напряжения, но и за счет вторичных эффектов: напряжение Т создает электрическую поляризацию за счет пьезоэлектрического эффекта (связь 7), а возникшее электрическое поле вызовет деформацию из-за электрострикции (связь 15).

Другим примером служит вторичный (или ”ложный”) пироэлектрический эффект в пьезоэлектрических кристаллах. Его рассмотрим подробнее позднее.

Приведенный пример взаимосвязей свойств кристалла, естественно, не является исчерпывающим. Вообще не все свойства присущи кристаллам одного типа. Они связаны также с составом кристаллического вещества, типом симметрии его решетки и другими факторами. Например, оптические свойства, магнитные свойства формально присущи любому кристаллу, но практически для технических применений используются далеко не все. Не у всех кристаллов выражен пьезоэлектрический эффект. Например, кристаллы с решеткой алмазного типа (т.е. например Ge и Si) им не обладают, но он есть у арсенида галлия (решетка типа цинковой обманки). Но лучше всего это свойство изучено и шире всего используется у кристаллического кварца. Диаграмму, подобную рассмотренной, можно построить, например, для представления взаимосвязи оптических, механических и электрических свойств кристаллов, используемых для электро-акусто-оптической обработки информации.

Рассмотрим более подробно некоторые физические явления в кристаллах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]