Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lections.doc
Скачиваний:
239
Добавлен:
03.05.2015
Размер:
4.72 Mб
Скачать

13. Термоэлектрические сенсоры температуры

Термоэлектрические сенсоры реализуют прямое преобразование теплоты в электрический сигнал и не нуждаются в источниках питания. Создание подобных сенсоров температуры возможно также на основе использования пироэлектрического эффекта.

В основе термоэлектрического преобразования лежит эффект Зеебека (1770-1831), открытый в 1821г. Изучая тепловые эффекты в гальванических устройствах, Зеебек соединил попарно концы двух полукруглых дуг (проводников), изготовленных из висмута и меди. При наличии разности температур между спаями стрелка лежащего рядом компаса отклонялась (рис.1). Отклонение наблюдалось и при других парах металлов.

Рис. 1. Опыт Зеебека

Зеебек назвал наблюдаемое явление термомагнетизмом, но не связал отклонение компасной стрелки с протеканием в таком замкнутом контуре электрического тока.

Термоэлектрическую природу эффекта независимо друг от друга поняли годом позже Фурье и Эрстед; они же предложили первые термоэлементы.

Логичное объяснение природа термоэлектрического эффекта нашла после работ У.Томсона в середине XIX века. Если взять металлическую шину и придать ее концам разную температуру, то от нагретого конца к холодному за счет теплопроводности будет передаваться тепловая энергия (законы Фурье были уже известны). У.Томсон установил, что при этом вдоль проводника возникнет электрическое поле, вызванное градиентом температуры*).

_______________________________________________________

*) Другие возникающие при этом эффекты, установленные У. Томсоном, здесь не рассматриваются.

Процесс этот описывается уравнением:

,

где α – абсолютный коэффициент Зеебека, характерный для данного материала.

Это уравнение является основным уравнением термоэлектрического эффекта, связывающим изменение температуры и потенциала вдоль проводника.

Для однородного проводника справедливо:

dV = α dТ.

Для наглядности рассмотрим проводник с неравномерным распределением температуры вдоль его длины (рис. 2).

Рис. 2. Эффект Зеебека в неравномерно нагретом проводнике

Градиент температуры в любой точке проводника определяет и градиент потенциала в этой точке

,

а перепад температуры между произвольными точками, в том числе и между концами проводника, приведет к разности потенциалов между ними.

При этом любые вариации температуры внутри интервала между рассматриваемыми точками на разность потенциалов между ними не влияют.

Для измерения ЭДС между концами провода, к ним надо подключить измерительный прибор. При этом возникнет замкнутый контур. Если щупы прибора выполнены из того же материала, что и исследуемый проводник, то никакой термоЭДС или ток зафиксировать не удастся, даже если между концами проводника есть разность температур (рис. 3А).

Рис. 3. Термоэлектрический контур с одинаковыми (А)

и различными (В) материалами проводов

В этом случае две ветви контура создают токи равной величины, но противоположных направлений, которые скомпенсируют друг друга.

Для выявления термоЭДС необходим контур из двух разных материалов (рис. 3В), в котором появится ток:

Δi12 = i1 - i2 .

Если контур разомкнуть, то измеряемая разность потенциалов и есть напряжение Зеебека, индуцированное теплом.

Физическое объяснение эффекта достаточно просто. Свободные электроны в металле ведут себя как электронный газ, их кинетическая энергия определяется температурой. В разных металлах количество электронов отличается. При контакте двух металлов происходит диффузия электронов в материал, где исходно их было меньше, и он заряжается отрицательно, а исходно более богатый электронами материал приобретает положительный заряд. В результате процесс диффузии уравновешивается электрическим полем. Если теперь один из контактов нагреть, равновесие нарушается. Таким образом, эффект Зеебека является электрическим по своей природе. Коэффициент Зеебека α присущ данному материалу, равно как и другие его параметры (удельная проводимость, теплопроводность и пр.).

Поскольку для выявления и использования эффекта Зеебека всегда необходимо использовать два разных материала А и В, вводится понятие дифференциального коэффициента Зеебека для термопары αТ

αТ = αАВ = αА – αВ .

Тогда напряжение на соединении будет равно

dVAB = αAB dT или .

В термопаре всегда можно выделить холодный (опорный, эталонный) и горячий спай. Коэффициент Зеебека не зависит от способа реализации спая (сварка, скрутка, спайка) и определяется только природой контактирующих металлов.

Из изложенного ясно, что эффект Зеебека реализует прямое преобразование тепловой энергии в электрическую. Для повышения индуцированного напряжения Джоуль впервые предложил соединять несколько термопар в батарею.

Термопары естественно использовать для измерения температуры. Впервые такое предложение сделал Беккерель в 1826г. Реальные конструкции термопар выполнил Г. Ле-Шателье в 1886г. на основе проводов из платины и сплавов платины с родием; позднее и на основе других материалов.

Функцию напряжения, генерируемого термопарой, от температуры часто аппроксимируют уравнением второго порядка

VAB = α0 + α1T + α2T2 .

Например, для термопары медь (+) – константан (-) уравнение выглядит так:

VAB = VT = -0,0543 + 4,094 ·10-2T + 2,874 ·10-5T2 .

Тогда коэффициент Зеебека этой пары принимает вид

αТ = = 4,094 ·10-2 + 5,748 ·10-5T

и является линейной функцией температуры. Иногда его называют чувствительностью термопары.

Термопары относятся к классу относительных датчиков, т.к. напряжение определяется разностью температур спаев. Обычно один спай является опорным (эталонным), его температура поддерживается постоянной и известна, как правило это холодный спай.

В микросистемной технике используют термопары плоской формы и как правило изготовленные одним из способов формирования пленочных слоев. Для повышения чувствительности несколько термопар объединяют в термобатарею (термоэлемент). Проводники термопары могут размещаться в одном или нескольких слоях, разделенных диэлектриком.

На рис. 4 представлен фрагмент конструкции датчика расхода газа, в котором о скорости газового потока судят по перепаду температуры (принцип работы такого расходометра рассмотрен в разделе 5.2).

Рис. 4. Сенсор перепада температуры в газовом потоке

Сенсор перепада температуры здесь содержит две последовательно включенные термопары. Они расположены на основании, выполненном на тонкой консольной балке, сформированной химическим травлением кремниевой подложки датчика. Такая конструкция использована с целью уменьшения влияния температуры подложки на сенсор перепада температуры в газовом потоке и уменьшения тепловой инерции устройства.

В микросистемных устройствах на кремнии естественно использовать этот материал как один из проводников термопары в монокристаллической или поликристаллической форме. Следует отметить, что коэффициент Зеебека в полупроводниках сильно зависит от их легирования. В частности, для монокристаллического кремния n-типа при комнатной температуре коэффициент Зеебека определяется формулой

,

где ρ0 ≈ 5 ·106 Ом·м и m ≈ 2,5 – константы;

К – постоянная Больцмана; q - заряд электрона.

Значения коэффициента Зеебека для кремния в монокристаллической и поликристаллической форме по отношению к меди при комнатной температуре приведены в таблице 1.

Таблица 1

Коэффициенты термоЭДС Si по отношению к Cu при t0 = 250C

Материал

αАВ, мкв/к

p – Si

102 103

p – поли Si

102 5·102

n – Si

-102 103

n – поли Si

-10-2 5·102

При подключении термопары к интерфейсной измерительной схеме следует соблюдать осторожность в выборе материалов. В частности, такой вход измерительной схемы всегда должен использовать идентичные проводники. Поскольку термоЭДС при малых перепадах температуры обычно невелики, необходимо также соблюдать меры по предотвращению помех.

Контрольные вопросы.

1. В чем суть принципиальных отличий активных и пассивных сенсоров температуры?

2. Эффект Зеебека; трактовка его физической природы в исторической ретроспективе.

3. Термопары и термобатареи – возможности их использования для измерения температуры и других целей.

4. Реализация термоэлектрических сенсоров в МСТ: характерные черты конструкций, технологии и применяемых материалов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]