Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теплотехника, часть 2 (Теплопередача).doc
Скачиваний:
268
Добавлен:
28.05.2015
Размер:
1.74 Mб
Скачать

Физические свойства жидкостей

В качестве жидких теплоносителей в технике применяют различные вещества: воздух, воду, газы, масло, нефть, спирт, ртуть, расплавленные металлы и многие другие. В зависимости от физических свойств этих веществ процессы теплоотдачи протекают различно.

Большое влияние на теплообмен оказывают следующие физи­ческие параметры: коэффициент теплопроводности , удельная теп­лоемкостьс, плотность , коэффициент температуропроводностиа и коэффициент динамической вязкости . Эти параметры для каждого вещества имеют определенные значения и являются функ­цией температуры, а некоторые из них и давления.

Величины , с, аи уже выше рассматривались. В исследованиях конвективного теплообмена большое зна­чение имеет также вязкость. Все реальные жидкости обладают вяз­костью. Между частицами или слоями, движущимися с различными скоростями, всегда возникает сила внутреннего трения (касательное усилие), ускоряющая движение более медленного слоя и тормозя­щая движение более быстрого. Величина силы тренияS между слоями, отнесенная к единице поверхности, согласно закону Ньютона, пропорциональна градиенту скорости dw/dn по нормали к направлению движения потока. Следовательно, можно записать:

,

где – коэффициент пропорциональности, зависящий от природы жидкости и её

температуры и называемый коэффициентом динамической вязкости, или

коэффициентом внутреннего трения; его единица измерения: Н.сек/м.

Чем больше величина , тем меньше текучесть жидкости. Вязкость капель­ных жидкостей с увеличением температуры уменьшается и почти не зависит от давления. У газов с увеличением температуры и дав­ления вязкость увеличивается. Коэффициент вязкости идеальных газов не зависит от давления.

Кроме коэффициента динамической вязкости, в уравнениях гид­родинамики и теплопередачи встречается коэффициент кинемати­ческой вязкости , представляющий собой отношение динамической вязкостик плотности жидкости:

, м/сек.

Коэффициенты , иявляются физическими параметрами, оп­ределяются опытным путем и приводятся в справочных таблицах.

Режимы течения и пограничный слой

Теоретическое рассмотрение задач конвективного теплообмена основывается на использовании понятия пограничного слоя, вве­денного Л.Прандтлем в начале нынешнего столетия.

Рассмотрим процесс продольного омывание какого-либо тела безграничным потоком жидкости с постоянной скоростью течения (рис. 4.1). Вследствие влияния сил трения в непосредственной близости от поверхности тела скорость течения должна очень бы­стро падать до нуля. Тонкий слой жидкости вблизи поверхности тела, в котором происходит изменение скорости жидкости от зна­чения скорости невозмущенного потока вдали от стенки до нуля непосредственно на стенке, называетсягидродинамическим погра­ничным слоем (рис. 4.1). Толщина этого слоя возрастает вдоль по потоку.

y Гидродинамический пограничный слой

x

Рис. 4.1

С увеличением скорости потока толщина гидродинамического пограничного слоя уменьшается вследствие сдувания его потоком. Напротив, с увеличением вязкости толщина гидродинамического пограничного слоя увеличивается.

Течение в гидродинамическом пограничном слое может быть как турбулентным, так и ламинарным (рис. 4.2). Характер течения и толщина в нем (и) определяются в основном величи­ной критерияRe.

y Турбулентное течение

s x

Ламинарное течение Ламинарный подслой

Рис. 4.2

Необходимо отметить, что и в случае турбулентного гидродина­мического пограничного слоя непосредственно у стенки имеется очень тонкий слой жидкости, движение в котором имеет ламинар­ный характер. Этот слой называют вязким, или ламинарным под­слоем 3.

Если температуры стенки и жидкости неодинаковы, то вблизи стенки образуется тепловой пограничный слой, в котором происхо­дит изменение температуры жидкости (рис. 4.3). Вне погранич­ного слоя температура жидкости постоянна .

y Тепловой пограничный слой

x

Стенка

Рис. 4.3

В общем случае толщины теплового и гидродинамического слоев могут не совпадать (рис. 4.4). Соотношение толщин гидродинамического и теплового пограничных слоев определяется величиной безразмерного критерия Прандтля:

,

где – коэффициент кинематической вязкости жидкости;

а – коэффициент температуропроводности.

Для вязких жидкостей с низкой теплопроводностью (например, масел) критерий Pr >1 и толщина гидродинамического погранич­ного слоя больше толщины теплового пограничного слоя. Для газов критерий и толщины слоёв приблизительно одинаковы. Для жидких металлов критерийи тепловой пограничный слой проникает в область гидродинамического невозмущенного потока.

Механизм и интенсивность переноса тепла зависят от характера движения жидкости в пограничном слое. Если движение внутри теплового пограничного слоя ламинарное, то тепло в направлении, перпендикулярном к стенке, переносится теплопроводностью. Од­нако у внешней границы слоя, где температура по нормали к стенке меняется незначительно, преобладает перенос тепла конвекцией вдоль стенки.

При турбулентном течении в тепловом пограничном слое пере­нос тепла в направлении к стенке в основном обусловлен турбулент­ным перемешиванием жидкости. Интенсивность такого переноса тепла существенно выше интенсивности переноса тепла теплопро­водностью. Однако непосредственно у стенки, в ламинарном под­слое, перенос тепла к стенке осуществляется обычной теплопровод­ностью.

Изменение физических свойств жидкости в пограничном слое зависит от температуры, в связи с чем, интенсивность теплообмена между жидкостью и стенкой оказывается различной в условиях на­гревания и охлаждения жидкости. Так, например, для капельных жидкостей интенсивность теплообмена при нагревании будет боль­шей, чем при охлаждении, вследствие уменьшения пограничного слоя. Следовательно, теплоотдача зависит от направления теплово­го потока.

Очень большое значение для теплообмена имеют форма и размер поверхностей; в зависимости от них резко может меняться характер движения жидкости и толщина пограничного слоя.