Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задание для студентов по лабораторной работе.doc
Скачиваний:
513
Добавлен:
13.02.2016
Размер:
27.19 Mб
Скачать

14.7. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине

Из теории Максвелла вытекает, что различные электромагнитные волны, в том числе и световые, имеют общую природу. В связи сэтим целесообразно представить всевозможные электромагнитные волны (электромагнитное излучение) на единой шкале (рис. 14.18).

Вся шкала условно подразделена на шесть диапазонов: радиоволны (длинные, средние и короткие), инфракрасные, видимые, ультрафиолетовые, рентгеновские волны и гамма-излучение. Эта классификация определяется либо механизмом образования волн, их частотой, либо возможностью их зрительного восприятия человеком.

Рис. 14.18

Радиоволны обусловлены переменными токами в проводниках и электронными потоками (макроизлучатели). Инфракрасное, видимое и ультрафиолетовое излучения исходят из атомов, молекул и быстрых заряженных частиц (микроизлучатели). Рентгеновское излучение возникает при внутриатомных процессах, -излучение имеет ядерное происхождение.

Некоторые диапазоны перекрываются, так как волны одной и той же длины могут образоваться в разных процессах. Так, наиболее коротковолновое ультрафиолетовое излучение перекрываетсядлинноволновым рентгеновским.

В этом отношении очень характерна пограничная область инфракрасных волн и радиоволн. До 1922 г. между этими диапазонами был пробел. Наиболее коротковолновое излучение этого незаполненного промежутка имело молекулярное (атомное) происхождение (излучение нагретого тела), а наиболее длинноволновоеизлучалось макроскопическими вибраторами Герца. Российским физиком А. А. Глаголевой-Аркадьевой было предложено пропускать искру через смесь большого числа мелких металлических опилок в масле. При этом можно было получать различные электромагнитные волны с длиной волны 82 мкм и более. Таким образом, диапазоны инфракрасных и радиоволн были сомкнуты.

Сейчас никого не удивляет, что даже миллиметровые волны могут генерироваться не только радиотехническими средствами, но и молекулярными переходами. Появился раздел — радиоспектроскопия, который изучает поглощение и излучение радио­волн различными веществами.

В медицине принято следующее условное разделение электромагнитных колебаний на частотные диапазоны (табл. 25).

Таблица 25

Низкие (НЧ)

Звуковые (34)

Ультразвуковые или надтональные (УЗЧ)

Высокие (ВЧ)

Ультравысокие (УВЧ)

Сверхвысокие (СВЧ)

Крайневысокие (КВЧ)

до 20 Гц

20 Гц — 20 кГц

20 кГц — 200 кГц

200 кГц — 30 МГц

30 МГц — 300 МГц

300 МГц — 300 ГГц

свыше 300 ГГц

Часто физиотерапевтическую электронную аппаратуру низкой и звуковой частот называютнизкочастотной. Электронную аппаратуру всех других частот называют обобщающим понятиемвысокочастотная.

Интерференция и дифракция света. Голография

Под интерференцией света понимают такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. Для получения интерференции света необходимо выполнение определенных условий. Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит, в частности, от соотношения длины волны и размеров неоднородностей. Различают с некоторой степенью условности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера). Описание дифракционной картины возможно с учетом интерференции вторичных волн

В главе рассматривается голография как метод, основанный на интерференции и дифракции