Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
293
Добавлен:
17.02.2016
Размер:
5.97 Mб
Скачать

Глава 9. Расчет переходных процессов классическим методом 63

ляет элемент матрицы A, равный +1 (например, для ветви 5 начальный узел в табл. 9.2 совпадает с узлом 1; следовательно, элемент a15 матрицы A равен +1). Конечный узел в табл. 9.2 для данной ветви характеризует элемент матрицы A, равный –1 (например, для ветви 4 конечный узел в табл. 9.2 совпадает с узлом 3; следовательно, элемент a34 матрицы A равен –1). Заметим, что номера столбцов матрицы A аналогичны номерам соответствующих ветвей нормального графа. Имеет смысл произвести перенумерацию ветвей таким образом, чтобы номера столбцов матрицы A ñ 1 äî l совпадали с новыми номерами ветвей нормального графа. Для этого достаточно произвести перенумерацию следующим образом: ветви 10 присвоить порядковый номер 1 (10 1), ветви 5 — порядковый номер 2 (5 2) и т. д.: 6 3, 1 4, 4 5, 9 6, 3 7, 8 8, 2 9, 7 10. Такую перенумерацию следует произвести для исключения путаницы в обозначениях матриц A, C, D и перехода к привычному способу счета номеров строк и столбцов матриц (aij будет характеризовать элемент матрицы A, принадлежащий i-й строке и j-му столбцу).

Систему уравнений Cu 0 è Di 0 можно записать в развернутом виде:

Cu

 

F 1

 

 

u

ä

Fu ä

u c

0

èëè

u c

 

Fu ä ;

 

 

 

 

 

 

 

u ñ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Di

 

 

 

 

1 F t

 

i ä

 

i

ä

F t i

ñ

0

èëè

i

ä

F t i

ñ

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ñ

 

 

 

 

 

 

 

 

 

 

 

 

Уравнения для подматриц токов и напряжений

i c

 

 

 

 

= c i Lc iGc iCc

 

 

 

t ;

u c

 

 

 

 

 

 

 

 

u =c u Lc uGc uCc

 

 

 

t ;

 

 

 

 

 

 

 

 

 

i

ä

 

 

 

 

i

Eä

i

Ñä

i

Rä

i

Lä

 

 

 

 

t ;

u

ä

 

 

 

 

u

Eä

u

Cä

u

Rä

u

Lä

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

можно записать в развернутом виде через матрицу F:

u =ñ

 

F=E u Eä

F=C uCä

F=R u Rä

F=L u Lä ;

(1)

u Lñ

FLE u Eä

FLC uCä

FLR u Rä

FLL u Lä ;

(2)

 

 

 

uG

 

FGE u Eä FGC uCä

 

FGR u Rä ;

 

 

 

 

(3)

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uCc FCE u Eä

FCC uCä ;

 

 

 

 

 

 

 

(4)

i

 

 

F t

=

c

 

F t

 

i

Lc

F t

 

 

i

Gc

F t i

Cc

;

(5)

 

 

Eä

 

=E

 

 

 

 

LE

 

 

GE

 

 

 

 

CE

 

 

 

i

Ñä

 

F t

=

c

F t

 

i

Lc

F t

 

 

i

Gc

F t i

Cc

;

(6)

 

 

 

=C

 

 

 

 

LC

 

 

GC

 

 

 

CC

 

 

 

 

 

 

i

Rä

 

F t

=

c

 

F t i

Lc

F t

 

i

Gc

;

 

 

 

 

(7)

 

 

 

 

 

 

=R

 

 

 

 

LR

 

 

 

 

GR

 

 

 

 

 

 

 

 

 

 

 

i

Lä

 

F t

=

c

 

F t

i

Lc

.

 

 

 

 

 

 

 

 

(8)

 

 

 

 

 

 

 

 

 

=L

 

 

 

LL

 

 

 

 

 

 

 

 

 

 

 

 

Согласно последнему соотношению и закону электромагнитной индукции, при наличии взаимной индуктивной связи между всеми катушками индуктивности можно записать

64 Часть 2. Теория линейных электрических цепей

u Lä

 

d

 

L

u Lñ

dt

 

L

 

 

ä,ä

Lä,c

 

i

 

 

4

 

L

ä,ä

Lä,c

 

t

= =

 

 

F

t

i

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

Lä

 

d 2

 

 

F

c

 

LL

Lc

 

 

 

 

2

 

 

 

 

 

 

 

5

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

1,

(9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c, ä

L

c,c

 

i

 

 

dt 2

 

L

c,ä

L

c,c

 

 

 

 

i

 

 

 

 

 

 

 

 

2

 

 

 

 

Lc

 

6

 

 

 

 

 

 

 

 

Lc

 

 

 

 

 

 

 

3

 

ãäå iLä, uLä — подматрицы токов и напряжения индуктивных катушек, вошедших в дерево графа; iLc, uLc — подматрицы токов и напряжения катушек индуктивности элементов, вошедших в подграф связей.

Также, согласно выражению для токов через конденсаторы, получаем

iCä

 

d

 

Cä

0

 

uCä

.

(10)

iCñ

dt

 

0

Cc

 

uCc

 

 

 

 

 

Для резистивных элементов

iGä

 

d

 

G ä 0

 

uGä

èëè

uGä

 

d

 

G ä–1

0

 

iGä

.

(11)

i Rñ

dt

 

0 R c–1

 

u Rc

u Rñ

dt

0

R c

 

i Rc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если каждый из подграфов резистивных ветвей, входящих в дерево или подграф связей, содержит управляемые напряжением источники тока, то они могут быть учтены в матрицах Gä è Rñ. Например, если в i-й резистивной ветви, входящей в дерево, имеется источник тока =i giju j , управляемый напряжением j-й резистивной ветви дерева uj, то соответствующий элемент gij матрицы Gä равен gij . (Заметим, что gij 0, если в ветви i отсутствует управляемый напряжением uj источник тока.) Точно так же, если в подграфе связей содержится управляемый напряжением связи us источник тока q gsqus, то его можно учесть добавлением в подматрицу Gc элемента gsq. Путем взаимных эквивалентных преобразований источников тока и ЭДС можно учесть все виды зависимых источников. При наличии источников тока, управляемых напряжением ветвей дерева, последнее выражение имеет вид

iGä

 

d

 

G ä,ä

G ä,ñ

 

uGä

èëè

uGä

 

d

 

G ä,ä

G ä,ñ

 

iGä

.

i Rñ

dt

 

G ñ,ä

G ñ,ñ

 

u Rc

u Rñ

dt

 

G ñ,ä

G ñ,ñ

 

i Rc

 

 

 

 

 

 

 

 

Для упрощения дальнейших выкладок предположим, что в цепи управляемые источники таковы, что их можно учесть в подграфах

Gä,ä Gä , Gñ,ñ Gñ , (Gä,ñ Gñ,ä 0).

В системе (1)—(8) дифференциальными являются уравнения (2) и (6). Для них

 

 

 

 

 

 

 

 

 

 

d

 

 

C

c,ä

u

ñ,ä

 

 

 

 

 

F t

=

c

F t

 

i

Lc

F t

 

i

Gc

F t i

Cc

;

 

 

 

 

 

 

(12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

=C

 

 

 

 

LC

 

 

 

GC

 

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

F

 

 

 

 

F

 

 

 

 

 

F

 

 

 

 

 

 

F

 

 

 

 

 

 

 

.

 

 

(13)

 

 

 

 

 

L

ñ,ä

i

Lä

ñ,c

i

Lc

 

 

 

 

LE

u

Eä

 

u

Ñä

LR

u

Rä

LL

u

Lä

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Согласно (3) и (7)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

ä

u

Rä

 

 

 

F t

=

c

 

F t i

Lc

F t

 

G

c

( F u

Eä

F u

F u

Rä

);

 

 

 

 

 

 

 

 

 

 

 

 

 

=R

 

 

 

 

 

 

 

 

 

LR

 

 

GR

 

 

 

 

GE

 

 

 

 

GC

 

 

Cä GR

 

 

 

 

u

Rä

(G

ä

+ F t

 

G F

 

)–1 (F t

=

c

F t i

Lc

F t

G

F u

Eä

F t

 

G

F u

Cä

);

 

 

 

 

 

 

 

GR c GR

 

 

 

 

 

 

 

=R

 

 

 

LR

 

 

 

GR

 

 

c GE

 

 

GR

 

 

 

c GC

 

Глава 9. Расчет переходных процессов классическим методом 65

 

 

 

R

i

Gc

F u

Eä

F u

Cä

F R

ä

(F t

=

c

 

F t i

Lc

F t

i

Gc

);

 

 

 

 

 

 

 

 

c

 

 

GE

 

 

 

 

GC

 

 

 

 

GR

 

=R

 

 

LR

 

 

GR

 

 

 

 

i

Gc

(R

c

F R

F t

)–1( F u

Eä

F u

Ñä

F R

ä

F t

=

c

 

 

F

R

ä

F t

i

Lc

).

 

 

 

 

GR

 

ä GR

 

 

 

 

 

GE

 

 

 

 

GR

 

=R

 

 

 

 

GR

 

 

LR

 

 

 

Из (8) и (9), а также (4) и (10) следует

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u Lä

 

d

[L

ä,ä (FLt== ñ

FLLt

i Lñ) Läñ i Lä ];

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

d

 

(C

 

 

u

 

 

)

 

d

C

 

( F u

 

 

F u

 

 

).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cc

 

dt

 

c,c

 

Cc

 

 

 

 

dt

c,c

 

 

CE

 

Eä

 

CC

 

 

Cä

 

 

 

 

 

 

 

 

(14)

(15)

(16)

(17)

Подставив в (12) из (15) и (17), а в (13) из (14) и (16) и введя обозначения

R R

c

 

F R

 

 

F t

 

;

 

G G

ä

F t

G

 

F

 

 

 

;

 

 

 

C C

ä

 

F t C F

 

;

 

 

 

 

 

 

 

 

 

 

 

GR

 

 

ä GR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GR

 

 

 

 

c

GR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

c CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L L

c,c

F

LL

L

ä,ä

F t

F

LL

L

ä,c

 

L

c,ä

F t ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

окончательно получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

 

uCä

 

A

 

uCä

 

 

B

 

 

 

 

u Eä

 

B

 

 

 

 

d

 

 

u Eä

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

0 L

 

i Lc

 

1

i Lc

 

 

1

 

 

 

=c

 

2

 

dt

 

=c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ãäå

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

F t

 

R –1F

 

 

 

 

 

 

 

 

 

(F t

 

F t

 

 

 

R

–1F R

ä

F t

)

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

( F

 

 

 

 

 

 

 

GC

 

 

 

 

 

GC

 

 

 

 

 

 

 

 

 

 

 

 

LC

 

 

 

 

GC

 

 

 

 

 

 

 

GR

 

 

LR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+F

 

 

G

–1F t

 

G F

)

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

G

–1F t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LC

 

LR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GR

c

 

GC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

F t

 

 

R

–1F

 

 

 

 

 

 

 

 

(F t

 

F t

 

 

R

–1F R

ä

F t

)

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

( F

 

 

 

 

 

 

GC

 

 

 

 

 

 

 

GE

 

 

 

 

 

 

 

 

 

 

 

=C

 

 

 

 

 

GC

 

 

 

 

 

 

 

GR

 

 

 

=R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+F

 

 

 

G –1F t

 

G

F

)

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

G

–1F t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LE

LR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GR

 

c

 

 

GE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F t

C

c

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 2

 

 

 

 

 

CC

 

 

 

 

CE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

( FLL Lä,äF=t L

 

Lc,äF=t L )

 

 

 

 

 

 

 

 

 

 

 

 

Åñëè

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

uCä

 

;

 

A

 

C 0

 

–1

A

 

 

;

 

 

B

 

C 0

 

–1

 

 

 

B

 

 

 

B

 

d

 

 

;

 

 

u

 

 

 

 

u Eä

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i Lc

 

 

 

 

0 L

 

 

 

1

 

 

 

0 L

 

 

 

 

 

 

 

 

1

 

 

2 dt

 

 

 

 

 

 

=c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

то можно уравнение состояния записать в следующем виде:

ddtx Ax Bu.

Для электрической цепи, эквивалентная схема которой представлена на рис. 9.32, à, имеем:

 

R

ä

 

 

 

 

 

 

 

r

 

 

 

; G

c

 

 

 

 

g

2

 

; R R

c

F R

F t

 

 

 

 

r

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r r

 

 

 

 

 

 

 

r

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GR

ä GR

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

c

 

 

 

 

C

7

 

; L

ä,ä

 

 

 

 

L

4

 

; G G

ä

F t

G F

 

 

 

g

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

g

2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

g g

2

 

 

 

 

 

g

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GR

c GR

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66 Часть 2. Теория линейных электрических цепей

 

 

 

 

 

 

 

 

 

L

c,c

 

 

 

 

L3

 

 

 

 

M 38

;

 

L

ä,c

 

 

 

 

 

 

 

M

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

84

 

 

 

 

 

;

 

 

 

 

 

 

 

C

ä

 

 

 

 

 

 

 

 

 

C5

 

0

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 83

 

 

 

 

 

L8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Элементы матрицы A

1

 

 

 

 

 

 

 

a11

 

 

 

a12

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 21

 

 

 

a 22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

11

F t R

–1F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

–1

 

 

 

1 1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GC

 

 

 

 

 

 

 

 

GC

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

12

 

F t

F t

R

–1F R

ä

F t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LC

 

 

 

 

GC

 

 

 

 

 

 

 

 

GR

 

 

 

 

 

 

 

 

 

LR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1

 

 

r1

 

 

0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 r2 r

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0

 

 

 

 

 

 

 

 

 

 

 

 

1 r r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

21

 

F

LC

+F

LR

G –1F t

G

c

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 1

 

 

 

 

 

 

 

g2

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GR

 

 

 

 

 

GC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

1

 

 

 

g2

 

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0

 

 

 

g

1 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r r r r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a22 FLRG –1FLRt

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

–1

 

 

 

 

 

 

 

 

0 1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Элементы матрицы B

1

 

 

 

 

 

 

b11

 

 

 

 

b12

 

 

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b21

 

 

 

 

 

 

b22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

11

 

F t

R –1F

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GC

 

 

 

 

 

 

 

 

 

 

 

GE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r1 r

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

12

F t

 

 

F t

R –1F R

ä

F t

 

 

 

 

 

 

 

r1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

r1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=C

 

 

 

 

 

GC

 

 

 

 

 

GR

 

 

 

 

 

=R

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r1 r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

21

F

LE

+F

LR

G –1F t

 

G

c

F

 

 

 

 

 

 

 

 

 

0

 

 

g2

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

g2

 

 

0

 

 

 

 

0

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GR

 

 

 

GE

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

g

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

1

 

 

 

 

 

 

 

g1 g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b22 FLRG –1F=t R

 

 

 

 

 

 

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Элементы матрицы B

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

b

 

g

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

11

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b21

 

 

 

 

 

 

 

 

 

 

b22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

F t

 

C

 

F

 

 

 

1

 

 

 

C

7

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

 

;

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

0

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

0

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

 

 

 

CC

 

 

 

c CE

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 9. Расчет переходных процессов классическим методом 67

 

 

b F

LL

L

ä,ä

F t

 

 

 

L

c,ä

F t

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

L

4

 

 

0

 

 

 

 

 

 

 

0

 

; B

2

 

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

=L

 

 

 

 

 

 

 

 

 

 

 

 

=L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Матрица индуктивностей

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L L

CC

 

F

LL

L

ä,ä

F t

F

LL

L

 

ä,c

 

L

 

F t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L3

 

M 38

 

 

 

 

 

 

1

 

 

 

 

L

4

 

 

 

 

 

 

 

 

 

1 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

M

34

 

 

 

M

84

 

 

 

 

 

 

 

 

 

M 43

 

 

 

 

 

1 1

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 83

 

L8

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ïðè M38 M83 M34 M43 M48 M84 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

L3 L4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L4

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L8

 

 

 

L4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Матрица

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cä

 

 

 

 

C5

 

0

 

; Cc

 

 

 

 

 

 

C7

 

 

; FCC

 

1 1

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

C6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C5 C7

 

 

 

 

 

 

 

C7

 

 

 

 

 

 

 

 

 

C C

ä

F t

C

c

F

 

 

0

 

 

 

 

 

 

 

 

 

 

C

7

 

 

 

 

 

 

1 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

C5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

CC

 

 

 

 

0 C6

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C7

 

 

 

C6 C7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Окончательно получим

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u5

 

 

 

 

 

 

 

C5 C7

 

 

 

C7

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

u6

 

 

 

 

 

C7

 

 

 

 

 

C6 C7

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

i3

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L3 L4

 

 

 

 

 

 

 

 

 

 

 

 

L4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i8

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L4

 

 

 

 

 

L8 L4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 r

 

 

1 r

 

 

 

 

 

 

 

0 r2 r

 

 

 

u5

 

 

 

 

 

 

 

 

 

 

 

1 r

 

 

 

 

 

 

r1 r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 r

 

 

1 r 1 r r

 

 

 

u

 

 

 

 

 

 

 

 

 

 

1 r

 

 

 

 

 

 

 

r r

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

1

 

 

0

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r r r r

 

0

 

 

 

 

1 g

 

 

 

 

 

 

 

 

 

 

 

 

i

8

 

 

 

 

 

 

 

 

 

g g

 

 

 

 

1 g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Для численного решения полученная система дифференциальных уравнений должна быть дополнена начальными условиями для переменных состояния. Система дифференциальных уравнений в совокупности с начальными условиями представляет так называемую задачу Коши. Методы решения этой задачи с помощью численного интегрирования будут рассмотрены в следующем параграфе.

9.14. Численное интегрирование уравнений состояния

Рассмотрим систему дифференциальных в общем случае нелинейных уравнений, записанную в нормальной форме

x f(t, x), x(t0 ) x 0 ,

ãäå x x(t) — вектор переменных состояния, f — вектор-функция. Для сокращения записи и в соответствии с общепринятыми при изложении численных мето-

68 Часть 2. Теория линейных электрических цепей

дов обозначениями будем использовать для обозначения производной по времени точку над переменной.

Решение уравнения будем искать на отрезке >t0, t0 + T в виде таблицы.

t

t0

t0 + h

t0 + 2h

. . .

t0 + nh

. . .

t0 + Nh t0 + T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

x(t0)

 

 

h)

 

 

2h)

. . .

 

 

nh)

. . .

 

 

T)

x(t0

 

x(t0

 

x(t0

 

x(t0

 

Здесь h > 0 — некоторая малая величина, называемая шагом интегрирования èëè шагом дискретности (дискретизации) таблицы. Выбор этой величи- ны должен обеспечивать возможность аппроксимации точек x(tn ) x(t0 nh), n 0, 1, 2, …, N, N T/h такой функцией, которая воспроизводила бы все особенности исследуемого процесса x(t) с достаточной для практики точностью. Для вычисления значений x(t0 nh) дифференциальное уравнение заменяют алгебраическим, называемым разностным уравнением âèäà

r

?(x, h) [ar k x n k hbr k !(tn k , x n k , h)] 0,

k0

âкотором коэффициенты ar , br одновременно не равны нулю, а r n N. При этом значения x n x(tn ), приближенно описывающие x n x(tn ), определяют как решения систем алгебраических уравнений последовательно точка за точкой. Процесс вычисления таблицы с помощью разностных уравнений называют численным интегрированием (численным решением) дифференциального уравнения. Последнее соотношение называют методом численного интегрирования

(разностной схемой). Число r соответствует порядку разностного уравнения, который определяет число дополнительных начальных условий, необходимых для однозначного решения дифференциального уравнения. Совокупность начальных условий x 0 , x1, ..., x r 1 для разностного уравнения называют началом таблицы, à

способ вычисления значений x r 1 стартовым алгоритмом. Отметим, что при r 1 метод численного интегрирования называют одношаговым, à ïðè r > 1 — многошаговым.

Простейшие методы численного интегрирования основываются на идеях, высказанных Эйлером, Коши, Рунге, и носят их имена. Рассмотрим эти идеи и методы подробнее.

Одна из идей построения разностного уравнения по исходному дифференциальному уравнению состоит в применении к нему формулы Ньютона—Лейб- ница

tn 1

h

x(tn 1) x(tn ) f( , x( ))d x(tn ) f(tn 1 , x(tn 1 ))d

tn

0

с последующей аппроксимацией полученного интеграла.

Например, явный метод Эйлера (метод ломаных) соответствует приближенному вычислению интеграла по способу левых прямоугольников. При этом последнее уравнение принимает вид

 

 

 

hfn

, fn

 

f(tn

 

x n 1

x n

 

 

, x n ).

Глава 9. Расчет переходных процессов классическим методом 69

Ê неявному методу Эйлера (неявному методу ломаных) приводит приближенное вычисление интеграла по способу правых прямоугольников:

 

 

 

 

hfn 1

, fn 1

 

f(tn 1

 

x n 1

 

x n

 

 

, x n 1).

Заметим, что последнее уравнение не разрешено относительно неизвестного значения x n 1. Это обстоятельство и обусловило название метода численного интегрирования как неявного. В общем случае метод называют неявным, åñëè br 0, è явным в противном случае. Неявным, например, является метод трапеций

x n 1 x n 2h fn 1 fn ,

получаемый при аппроксимации интеграла в формуле Ньютона—Лейбница по методу трапеций.

Обобщением двух последних методов является метод ЛинигераУиллаби

 

 

 

h [(1

 

 

 

]; 0

 

1 2

,

x n 1

x n

 

 

)x n 1

x n

 

который при 0 совпадает с неявным методом Эйлера, а при 0,5 — с методом трапеций.

При построении разностных схем наряду с формулой Ньютона—Лейбница используются и другие представления решения дифференциального уравнения, например представления в виде ряда Тейлора

Α

 

h k 1

 

d k x(tn )

h

(h )Α d

Α

)

 

 

 

 

1x(tn

 

x(tn 1) x(tn ) h

 

 

 

 

 

 

 

 

 

 

d ,

k !

 

dt

k

Α !

Α1

 

k

1

 

 

 

0

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где высшие производные находят путем последовательного дифференцирования правой части исходного дифференциального уравнения. При пренебрежении интегралом в последнем выражении получают разностные уравнения первого порядка

 

 

 

 

Α

h k 1 d k 1

 

 

x n 1

 

x n

 

h

k !

 

dtk 1

fn .

(*)

 

 

 

 

k 1

 

 

 

Ïðè Α 1 последнее уравнение совпадает с ранее рассмотренным уравнением явного метода Эйлера. Отметим, что полученное уравнение называют по числу учитываемых производных методом степени Α.

Для того, чтобы не вычислять непосредственно производные правой части дифференциального уравнения при реализации численных методов, обычно используют идею Рунге. При этом вместо уравнения (*) применяют разностное

уравнение вида

 

 

 

!

 

 

 

 

 

 

 

, h).

 

!

 

x n 1

x n

h

(tn , x n

Функцию

, h) строят таким образом, чтобы ее разложение по степе-

 

(tn , x n

íÿì h в точке tn совпало до hΑ – 1 включительно с разложением в (*). Методы подобного типа называют методами Рунге—Кутта. Наиболее часто используют методы:

à) метод Эйлера—Коши

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

k

 

 

k 2n ;

k1n

 

fn

, k 2n

 

f(tn 1

 

 

hk1n );

 

1n

x n 1

x n

2

 

 

 

, x n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70 Часть 2. Теория линейных электрических цепей

á) усовершенствованный метод ломаных

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

h

 

 

 

 

 

 

 

 

hk 2n ;

k

1n

fn

,

 

k

2n

f

 

tn

 

 

 

 

 

k

1n

 

;

 

 

 

 

 

 

 

x n 1

 

x n

 

 

 

 

 

 

 

 

 

 

2

, x n

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

â) метод четвертой степени

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

k1n

 

2k 2n

 

2k 3n

 

 

 

k 4n ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x n 1

 

 

x n

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k1n

fn ,

 

k 2n

f

 

tn

 

,

 

 

 

 

 

k1n

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

x n

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

h

 

 

 

 

 

 

 

 

 

tn

 

 

 

 

 

k 3n .

 

k

3n

f

 

tn

 

 

 

 

 

k 2n

 

,

k 4n

f

h,

 

 

 

 

 

 

 

 

 

 

 

 

2

, x n

 

 

 

 

2

 

 

 

 

 

x n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогичным образом могут быть сконструированы и неявные методы Рунге—Кутта.

Рассмотренные простые и пользующиеся широкой известностью методы называют иногда классическими методами численного интегрирования. Существует и множество других методов — методы Адамса, Милна (относятся к методам классического типа) и более сложные методы типа методов Шихмана, Гира и т. д. При выборе метода численного интегрирования прежде всего руководствуются получением результата (таблицы) с достаточной точностью и в требуемое время. При этом необходимо учитывать характеристики используемого компьютера — ограниченность разрядной сетки, быстродействие, объем оперативной памяти и т. д.

Важной проблемой при численном интегрировании уравнений состояния является выбор шага дискретизации. Выбор большого шага нарушает адекватность разностных уравнений решаемым дифференциальным уравнениям, что приводит к бессмысленному результату. Если же шаг выбран слишком малым, то расчет потребует больших временных затрат, а накопление ошибок округления может привести к существенному искажению результата. Поэтому программные реализации численных методов интегрирования должны включать процедуру выбора шага, автоматически учитывающую особенности каждого решаемого уравнения состояния. Причем для создания эффективных и надежных программ численного интегрирования требуются такие процедуры, которые при минимальных вычислительных затратах обеспечивают выбор шага дискретизации, близкого к оптимальному. Применительно к реализации классических методов интегрирования подобным требованиям удовлетворяют алгоритмы выбора шага, основанные на правиле Рунге, позволяющем оценить погрешность численного решения дифференциального уравнения.

При рассмотрении этого правила будем считать, что при интегрировании дифференциального уравнения x f(x, t), x(t0) x0, x Β Rm методом степени Α

первоначально выбран шаг h и вычислено значение решения в точке t0 + h. Обозначим вычисленное значение как x Αh (t0 + h). Оно отличается от истинного зна- чения решения x(t0 + h) в точке t0 + h на погрешность метода степени Α íà øàãå h, ò. å.

 

 

 

 

Глава 9.

Расчет переходных процессов классическим методом 71

x(t0

 

h)

Α

(t0

 

h)

 

R h

, R h

 

Mh

Α 1

, M

 

diag mi ,

 

x h

 

 

 

 

 

ãäå mi — некоторые числа. Уменьшим шаг в два раза и вычислим значение решения x Αh 2 (t0 h) в той же точке за два шага, предварительно определив значение x Αh 2 (t0 h2) в точке t0 + h/2. Истинное значение решения

 

 

 

 

Α

 

 

 

 

 

 

Α

 

 

 

 

 

h Α 1

 

Α

 

 

 

 

Α

 

x(t0

h)

 

(t0

h)

2R h 2

 

(t0

h)

2M

 

 

 

 

(t0

h)

2 R h

,

 

 

 

 

 

x h 2

 

 

x h 2

 

 

2

 

x h 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ãäå Rh/2 M(h/2)Α+1 — погрешность данного метода на шаге h/2. Следовательно, можно оценить погрешность вычисления решения дифференциального уравнения методом степени Α íà øàãå h:

 

 

Α

2 (t0

 

h)

 

Α

(t0

 

h)

R h

x h

 

x h

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

1

2 Α

 

 

 

 

 

 

 

 

 

 

 

 

 

Подобный двукратный расчет одной точки решения для оценки погрешности вычисления называют правилом Рунге.

9.15. Устойчивость методов численного интегрирования

При выборе шага дискретизации существенным ограничением помимо соображений точности является и требование обеспечения устойчивости соответствующей разностной схемы. Для знакомства с понятием устойчивости разностной схемы и соответствующего ей метода численного интегрирования рассмотрим автономную систему дифференциальных уравнений

x Ax, x Β Rm , x(0) x

0

, t Β[0,T].

(*)

 

 

 

Положим для простоты, что собственные значения Χk, k 1, 2, ..., m матрицы A различны. При этом решение (*) асимптотически устойчиво, если вещественные части всех собственных значений матрицы A отрицательны, т. е. Re Χk < 0, и неустойчиво, если вещественные части некоторых собственных значений матрицы положительны. Если Re Χk 0, k 1, 2, ..., m, и некоторые собственные значе-

ния имеют нулевую вещественную часть, то решение x считается устойчивым (но не асимптотически устойчивым). Соответственно выделенным трем случа- ям и уравнение (*) считают асимптотически устойчивым, неустойчивым или просто устойчивым.

При численном интегрировании дифференциальное уравнение (*) заменяют разностным уравнением, устойчивость которого зависит уже не только от спектра матрицы A, но и от параметров разностной схемы. Для оценки устойчивости разностных схем расщепим систему (*) на m несвязанных уравнений, т. е. преобразуем ее к диагональному виду

yk Χ k yk , k 1, 2, ..., m;

 

 

 

 

 

y

k

diag {Χ

k

}y, y Β Rm ,

y(0) S 1x

0

,

t Β[0,T]

(**)

 

 

 

 

 

 

 

путем замены переменных x Sy, ãäå S — матрица правых собственных векторов матрицы A. Так как характеристики устойчивости этой последней системы

72 Часть 2. Теория линейных электрических цепей

и системы (*) совпадают, то для получения оценок устойчивости разностных схем можно рассматривать отдельно уравнение

x Χx, x(0) x0 ,

(***)

представляющее собой обобщенную запись последнего уравнения. Коэффициент Χ в этом уравнении в общем случае считают комплексным и равным Χ + j , поскольку комплексными могут быть собственные значения Χk матрицы À.

Применим для решения последнего уравнения разностное уравнение явного метода Эйлера

xn 1 xn hΧ xn èëè xn 1 (1 hΧ)xn .

Решение этого уравнения, дискретного аналога однородного дифференциаль-

ного уравнения первого порядка x Χx, может быть представлено в виде xn 0

n .

Тогда 0

n+1 (1 + Χ h) 0

n, откуда 1 Χ h, xn (1 Χh)n , 0 x0 .

 

Легко заметить, что такое решение уравнения x Χx вытекает из приближенного представления решения однородного уравнения первого порядка в дискретные моменты времени:

 

 

nΧh

 

 

Χh

 

n

 

 

 

(Χh)

2

x(tn ) x(nh) xn x

0 e

x

0 (e

)

x

 

1 Χh

 

 

 

 

0

2 !

 

 

 

 

 

 

 

 

 

 

 

 

 

n

x0 (1 Χh)n .

Åñëè Χ < 0 è h имеет такое значение, что | 1 Χh | 8 1, то абсолютное значение

решения xn увеличивается, в то время как точное решение монотонно убывает с ростом n.

Рассмотрим в качестве примера случай Χ –0,5 c–1, h 4,1 c. Тогда Χh –2,05; 1 + Χh –1,05. Точное решение x0 e–2,05n монотонно убывает с увеличением n 0, 1, 2, … (òàáë. 9.3).

Таблица 9.3

n

0

1

2

3

4

5

 

 

 

 

 

 

 

e 2,05n

1

0,12835

0,01657

0,00213

0,00027

0,000035

(1 Χh)n

1

–1,05

1,1025

–1,1576

1,2155

–1,2763

 

 

 

 

 

 

 

Решение же разностного уравнения является знакопеременным и растущим по абсолютному значению (табл. 9.3). Следовательно, для обеспечения асимптотической устойчивости решения последнего уравнения необходимо, чтобы |1 Χ h| 9 1 èëè (1 + h )2 + (h )2 < 1, ãäå Re Χ; Im Χ. Множество значе-

íèé hΧ, удовлетворяющих условию асимптотической устойчивости решения разностного уравнения для тестового уравнения (***), называют областью устойчивости метода, соответствующего этому разностному уравнению, в комплексной плоскости hΧ. Таким образом, областью устойчивости явного метода Эйлера является внутренность круга единичного радиуса с центром h 0, h –1 (рис. 9.33). Обратим внимание на то, что при чисто мнимом Χ ( 0)