Скачиваний:
79
Добавлен:
28.12.2013
Размер:
6.02 Mб
Скачать

 

 

Хромогликат

243

действует с Fc-рецепторами для IgE, поскольку

белка специфично в отношении белка с моле-

перекрестное связывание Fc-рецепторов анти-

кулярной массой 78000, а препарат одинаково

геном активирует функцию кальциевых кана-

эффективен как ингибитор секреции и как ин-

лов. Однако при обсуждении данной модели

дуктор фосфорилирования при его введении

необходимо сделать одну или две оговорки.

одновременно со стимулятором тучных клеток

Недавно при использовании метода быстрой

(соединение 48/80). При обеих формах актив-

фиксации не удалось выявить каких-либо кана-

ности хромогликата (фосфорилирование и по-

лов в мембранах интактных тучных клеток,

давление секреции) выявлена тахифилаксия.

стимулированных взаимодействием антиген-

Повторная экспозиция клеток с хромогликатом

IgE. Возможно, каналы не обнаруживаются

не вызывает фосфорилирования. Временные

именно этим методом; не исключаются, одна-

характеристики

дефосфорилирования белка с

ко, и иные объяснения, полученные на основа-

молекулярной

массой 78000

идентичны

нии данных других экспериментальных работ

временным характеристикам потери чувстви-

(см. главу 2). Клетки RBL являются, кроме

тельности (тахифилаксия) тучных клеток к хро-

того, чистой линией, в которой идентифициро-

могликату при тестировании подавления выде-

ван белок, связывающий хромогликат, поэтому

ления гистамина.

 

 

 

необходимо проведение подобных исследо-

Фосфорилирование белка тучных клеток с

ваний на других клеточных линиях, таких как

молекулярной массой 78000 стимулируется и

крысиные перитонеальные тучные клетки или

другими хромонами, отличающимися от

(лучше) тучные клетки человека. По сравнению

хромогликата. Относительная активность хро-

с тучными клетками крыс клетки RBL относи-

монов как ингибиторов гистаминовой секреции

тельно нечувствительны к подавлению хромо-

соответствует их активности как индукторов

гликатом выделения гистамина, которое вы-

фосфорилирования с молекулярной массой 78

звано антигенIgE; поэтому ряду исследова-

000. Напротив, другие ингибиторы секреции

телей не удалось получить подавление выде-

гистамина, сальбутамол и дибутирил цАМФ,

ления гистамина хромогликатом на клетках

вызывающие фосфорилирование

белка

через

RBL.

цАМФ-зависимые протеинкиназы, не иниции-

 

руют фосфорилирования белка тучных клеток с

Фосфорилированиебелков

молекулярной массой 78 000. Таким образом,

Известно, что фосфорилирование белков играет

если индукция фосфорилирования является ме-

ханизмом, с помощью которого хромогликат

основную роль в регуляции клеточных функций

подавляет секрецию гистамина, то данный

(см. главы 2, 3, 4). При стимуляции тучных

процесс не опосредуется цАМФ-зависимыми

клеток из перитонеальной полости крыс проис-

протеинкиназами. Показано, что дибутирил-и 8-

ходит фосфорилирование белков с молекуляр-

бромоциклический ГМФ фосфорилируют белок

ной массой 68 000, 59000 и 42000; эти фосфо-

с молекулярной массой 78 000 так же, как

рилированные белки участвуют в активации

хромогликат, поэтому не исключено, что хро-

процесса секреции гистамина (см. главу 2).

могликат может активировать цГМФ-зависи-

Белок тучных клеток с молекулярной массой 78

мую протеинкиназу. В нескольких работах по-

000 также подвергается фосфорилированию, но,

казано, что хромогликат и другие новые со-

вероятно, этот процесс связан с down-регу-

единения с аналогичным механизмом действия

ляцией секреции гистамина (см. главу 2).

являются ингибиторами фосфодиэстераз цик-

Хромогликат вызывает фосфорилирование

лических нуклеотидов, но во всех случаях зна-

белка с молекулярной массой 78 000 при от-

чения ІС50 для хромогликата при подавлении

сутствии любой стимуляции клеток. Кривая

фосфодиэстеразы были по крайней мере на 1 - 2

концентрация - эффект для хромогликатинду-

порядка выше ІС50 при подавлении секреции

цированного фосфорилирования совершенно

гистамина. Одна из фосфодиэстераз тучных

идентична кривой для вызванного хромогли-

клеток обладает преимущественным сродством

катом подавления выделения гистамина при

к цГМФ как к субстрату, а поскольку этот

стимуляции соединением 48/80. Если фосфори-

циклический нуклеотид фосфорилирует тот же

лирование данного белка связано с обратной

белок, что и хромогликат, не исключено, что

регуляцией, то его фосфорилирование хромо-

хромогликат может действовать (по крайней

гликатом объясняет подавление секреции гис-

мере частично), предотвращая распад цГМФ.

тамина этим препаратом. Более того, индуци-

В более поздних работах отмечалось, что

рованное хромогликатом фосфорилирование

протеинкиназа С фосфорилирует ряд белков

244 Глава 23

тучных клеток и клеток RBL (см. главу 2) и может быть мишенью для хромогликата. Белки, фосфорилированные киназой С, могут участвовать в активации и прекращении выделения гистамина; однако прямых доказательств изменения активности киназы С под действием хромогликата пока нет.

Гетерогенность тучных клеток: тканеваяивидоваяспецифичность хромогликата

Тучные клетки играют ведущую роль в иммунопатологии различных аллергических и воспалительных заболеваний. Для глубокого понимания этих болезней необходимо учитывать, что тучные клетки различной локализации значительно различаются как по своим функциональным способностям, так и по структурным характеристикам (см. главу 2). В частности, тучные клетки различаются по своей реактивности в отношении секреторных стимулов и по чувствительности к определенным препаратам. Сейчас ясно, что реактивность тучных клеток разной локализации по отношению к определенным антиаллергическим агентам весьма вариабельна. Хромогликат является сильным ингибитором анафилактического выделения гистамина перитонеальными тучными клетками крыс; он умеренно эффективен в отношении тех же клеток у хомячков и совершенно неэффективен в отношении перитонеальных клеток мышей. Препарат также неэффективен в отношении человеческих базофильных лейкоцитов, легочных и мезентериальных тучных клеток морских свинок и интестинальных тучных клеток крыс. Конечно, отсутствие чувствительности клеток последнего типа резко контрастирует с высокой степенью реактивности серозных клеток данного вида.

Эффект хромогликата in vitro изучен в ряде других животных систем. Препарат обычно активен в отношении соединительнотканных тучных клеток крыс и (кроме цитированных исследований) подавляет выделение медиатора из размельченного легкого и срезов кожи данного вида животных. Результаты исследований на других животных системах не столь впечатляющие. Хромогликат не оказывает действия на выделение медиатора из фрагментов легкого коровы, собаки и морских свинок, а также из срезов кожи морских свинок и человека. Как уже отмечалось, препарат также неспособен подавлять кожные анафилактические реакции

in vivo у коров, обезьян, мышей и кроликов, что вполне соответствует отсутствию активности в отношении тучных клеток кожи животных этих видов. Кроме неспособности к подавлению выделения гистамина базофильными лейкоцитами человека, хромон неэффективен в отношении базофилов коров, морских свинок и кроликов. Таким образом, препарат обладает значительной тканевой специфичностью у конкретного вида животных; например, у крыс хромогликат активен в отношении соединительнотканных клеток, но не в отношении тучных клеток слизистой оболочки желудочнокишечного тракта. Препарат обладает подобной избирательностью для конкретной ткани у разных видов, однако в отношении тучных клеток кожи он активен только у крыс.

Ввиду использования хромогликата при бронхиальной астме у людей его действие на тучные клетки легких вызывает дополнительный интерес. Некоторе время считалось, что хромогликат в лучшем случае является слабым и непостоянным ингибитором выделения медиаторов фрагментами легочных тканей человека. Аналогичные результаты получены с тучными клетками энзиматически размельченных легочных тканей человека. Препарат максимально эффективен в отношении фрагментов легких обезьян только при субоптимальных концентрациях антигена. Все это привело к предположению об отсутствии связи клинической эффективности хромона при астме с его действием на тучные клетки. Тем не менее соединение обладает значительной активностью в отношении тучных клеток, полученных при бронхоальвеолярном лаваже у человека. В типичном случае такие клетки составляют 0,1-0,5% общей популяции ядросодержа-щих клеток, полученных от здоровых людей. Интересно, что они обладают одинаковыми способностями к окрашиванию с тучными клетками слизистой оболочки желудочно-ки- шечного тракта крыс. Эти клетки представляют собой более гомогенную популяцию, нежели популяция клеток, полученных при энзиматической обработке легочной паренхимы. Клетки из лаважа дозозависимо выделяют гистамин при стимуляции анти-IgE человека и не нуждаются в предварительной пассивной сенсибилизации. Таким образом, в норме они обладают значительным количеством подобных аннтител на клеточной поверхности и имеют рецепторы для данного изотипа. У больных бронхиальной астмой при лаваже определяется повышенное количество тучных клеток и эо-

зинофилов, что, возможно, указывает на активацию in vivo первых клеток и выделение хемотаксических факторов-вторыми. Более того, отмечается положительная корреляция между числом полученных тучных клеток и тяжестью заболевания, определяемого индексами обструкции воздушного потока. Бронхоальвеолярные клетки больных астмой значительно более чувствительны к стимуляции анти-IgE и выделяют гораздо больший процент общего гистамина при всех эффективных дозах антисыворотки. Это усиление ответа относится лишь к клеткам легких, а для базо-филов периферической крови больных астмой и здоровых людей не выявлено разницы в индуцированной анти-IgE секреции гистамина. Клетки из лаважной жидкости аллергических доноров выделяют гистамин и при использовании специфического антигена.

Эти данные имеют клиническое значение, поскольку лаважные клетки локализуются в дыхательных путях или альвеолах (или в непосредственной близости от них). Таким образом, они легко и немедленно вступают в контакт с вдыхаемым антигеном, а при активации выделяют медиаторы непосредственно на поверхность дыхательных путей. Ввиду этого они могут представлять собой тип тучных клеток, имеющих первичное значение в начальном патогенезе астмы человека. Более того, ввиду их поверхностной локализации в дыхательных путях лаважные клетки подвергаются наибольшему воздействию хромогликата in vivo. Дополнительное значение имеет повышенная чувствительность данных клеток к препарату по сравнению с паренхиматозными тучными клетками. Однако необходимо помнить и о чрезвычайной трудности соотнесения активности в препаратах in vitro и in vivo. В практических целях эксперименты in vitro обычно проводятся таким образом, чтобы обеспечить получение 30% (или более) подавления секреции гистамина от его общего содержания в клетке. Однако часть гистамина, выделяемого in vivo даже во время наиболее сильного приступа, вероятно, гораздо меньше этого значения. Хорошо известно, что эффекты хромогликата и других

Хромогликат 245

подобных препаратов значительно варьируют и находятся в обратной зависимости от силы секреторного стимула. Таким образом, хромон может представлять собой более чем сильный ингибитор секреции гистамина бронхоальвеолярными клетками in vivo при обычном в клинических ситуациях уровне секреции. Вероятно, что использование препарата связано, по крайней мере частично, и с этим действием.

Разнообразие чувствительности к препарату наглядно показывает сложности, существующие при подборе тест-системы для скрининга потенциальных противоаллергических препаратов. Более того, если такие препараты проявят тканевую специфичность, сходную с хромогликатом, который, например, активен в отношении бронхоальвеолярных, но не кожных тучных клеток человека, то вряд ли какое-то одно соединение станет панацеей при всех аллергических нарушениях. Необходим целый ряд препаратов, направленных как на особые тучные клетки, так и на специфические болезненные состояния.

24Противовоспалительное действие кортикостероидов

Р.Дж. Флауэр, М.М. Дейл (R.J. Flower, M.M. Dale)

Кортикостероидыприродные гормоны

Кортикостероиды-это гормоны, секретируе-мые корой надпочечников. Они классифицируются как глюкокортикоиды, влияющие на углеводный и белковый обмен и обладающие противовоспалительными эффектами, и минералокортикоиды, играющие важную роль в водном и электролитном балансе. В данной главе рассматриваются глюкокортикоиды.

К основным природным глюкокортикои-дам относятся кортизол (гидрокортизон) и кортикостерон. Кортизол намного активнее кортикостерона и составляет 90% всех кортикостероидов, вырабатываемых в организме человека; у животных могут преобладать другие глюкокортикоиды.

Уровень кортизола в плазме составляет 4- 16 мкг/100 мл; отмечаются суточные колебания его концентрации: максимум - примерно в 8ч утра и минимум - около 16 ч. Для достижения противовоспалительного эффекта необходима концентрация примерно 100 мкг/100 мл.

Эндогенные глюкокортикоиды не циркулируют в плазме в свободной форме. В плазме крови содержится кортикостероидсвязывающий глобулин, который вместе с альбумином связывает примерно 90% общего количества плазменных глюкокортикоидов. Функция этого белка изучена не полностью, однако известно, что его содержание в крови меняется при заболеваниях, беременности и других состояниях.

Глюкокортикоиды не хранятся в готовом виде, а синтезируются и выделяются при стимуляции клеток коры надпочечников кортикотропином, пептидным гормоном передней доли гипофиза.

Выделение кортикотропина регулируется кортикотропин-рилизинг-фактором гипоталамуса (КРФ), а глюкокортикоиды по механизму отрицательной обратной связи оказывают влияние на высвобождение этих двух гормонов

(рис. 104). 246

Влияниеглюкокортикоидовна системы организма

По своей значимости эффекты глюкокортикоидов могут быть разделены на две категории: 1) противовоспалительные и иммунодепрессивные; 2) метаболические и опосредованные гипоталамусом и передним гипофизом эффекты обратной негативной связи, а также некоторые другие. При физиологическом выделении глюкокортикоидов в условиях целостного организма все эти эффекты обеспечивают выживание, особенно в условиях, угрожающих жизни. Те же эффекты необходимы при проведении заместительной терапии в случае недостаточной функции коры надпочечников. Однако при использовании глюкокортикоидов в качестве противовоспалительных препаратов все эффекты, кроме противовоспалительных, считаются побочными и нежелательными.

Разнообразие биологических эффектов глюкокортикоидов может, на первый взгляд, вызывать недоумение, но недавно была предложена гипотеза, объясняющая это положение. Идея, выдвинутая Munck и соавт. в 1984 г., предполагает, что глюкокортикоиды секретируются для предотвращения выхода из-под контроля защитных механизмов организма, которые активируются при заболевании и способны нарушать гомеостаз. Под защитными механизмами Munck подразумевает такие реакции на травму и заболевание, как воспаление, лихорадка, боль и др.

Другими словами, глюкокортикоиды составляют часть регуляторных механизмов, контролирующих реакции воспаления, и находятся в состоянии тонической активности у здоровых млекопитающих. При лечении больных экзогенными стероидами уровень гормонального подавления защитных механизмов возрастает почти до максимального значения.

Противовоспалительноедействие глюкокортикоидов

В течение многих лет наши представления о функции глюкокортикоидов в организме бы-

Кортикостероиды 247

Рис. 104. Регуляция синтеза и выделения кортикостероидов гормонами переднего гипофиза и гипоталамуса. Знак плюсстимулирующий эффект; знак минустормозящий эффект.

ли довольно туманными. С 30-х годов известно, что у человека и животных при стрессе, травмах и инфекциях в крови обязательно повышается уровень стероидов. Известный австрийский физиолог Ганс Селье объяснял эту реакцию защитным механизмом и считал, что стероиды так или иначе поддерживают воспаление1. Селье выделил много различных физиологических реакций на стресс, отметил их стереотипность и назвал их комплекс «общим адаптационным синдромом».

Идея Селье длительное время оказывала и продолжает оказывать влияние на наше мышление, однако данные, полученные вскоре после второй мировой войны, внесли некоторые сомнения относительно оценки роли стероидов. Американский врач Phillip Hench обнаружил, что у женщин, страдающих артри-

1 Было бы ошибкой относить воспаление к патологическим процессам. Без адекватной способности к воспалительной реакции организм не может противостоять инфекции и восстанавливать ткани после травмы.

том, часто наступает стойкая ремиссия во время беременности, а также при желтухе. Известно, что при беременности в крови наблюдается резкий подъем уровня глюкокортикоидов, поэтому Hench высказал догадку, что именно эти гормоны обладают противовоспалительным действием. Данная работа по времени совпала с получением синтетического кортизола, благодаря чему Hench смог с успехом применить гормон у больных ревматоидным артритом и другими хроническими воспалительными заболеваниями. Эта работа заложила основу современной глюкокортикоидной терапии. Сейчас известно, что препараты данной группы исключительно эффективны практически при всех воспалительных заболеваниях независимо от их причинных факторов. Противовоспалительные стероиды (кортизол и его синтетические аналоги) относятся к наиболее часто назначаемым лекарственным препаратам, но, к сожалению, их терапевтическая ценность при воспалительных заболеваниях снижается, так как их длительное применение чревато развитием побочных эффектов.

!?•

248 Глава 24

Уровни подавления воспаления глюкокортикоидами

Глюкокортикоиды подавляют как ранние, так и поздние проявления острого воспаления-по- краснение, жар, боль, отек, а также последующие процессы репарации и заживления ран. Они подавляют воспаление любого типа вне зависимости от вызвавшей его причины: внедрившийся патоген, физический или химический стимул, неадекватно развившийся иммунный ответ при повышенной чувствительности или при аутоиммунном заболевании.

При применении глюкокортикоидов уменьшаются вазодилатация и экссудация. Уменьшение вазодилатации частично связано с сосудосуживающим действием на небольшие кровеносные сосуды. Особенно заметно сокращение накопления лейкоцитов (как нейтрофилов, так и моноцитов) в месте воспаления, что, вероятно, является одной из основных причин снижения резистентности организма к инфекции. Уменьшение поступления нейтрофилов в зону воспаления сопровождается их повышенным выходом из костного мозга, что приводит к нейтрофильному лейкоцитозу (см. главу 20). Напротив, уменьшение выхода моноцитов из костного мозга приводит к снижению их количества в крови. Мононуклеарные фагоциты менее активны против бактерий; отмечается также ослабление секреции нейтральных протеаз. Снижается активность фибробластов, которые продуцируют меньшие количества коллагена и мукополисахаридов.

Действие глюкокортикоидов на лимфоциты зависит от вида животных. У видов, чувствительных к стероидам (кролики, крысы, мыши), глюкокортикоиды вызывают лимфолизис, который приводит к уменьшению количества Т-и В-клеток и их продуктов. У резистентных видов (люди, обезьяны, морские свинки) лимфолизис или отсутствует, или бывает незначительным. Однако в системах определения in vitro обнаруживается ослабление пролифера-тивной реакции на митогены и антигены, что связано со снижением образования интерлей-кина-2 (ростовой фактор Т-клеток). В таком случае влияние глюкокортикоидов на первичный иммунный ответ выражено сильнее, чем на вторичный, поскольку клональная экспансия клеток при вторичном ответе уже снижена в результате уменьшенной продукции интер- лейкина-2 (см. рис. 4).

В табл. 24 приведен список медиаторов воспаления, синтез которых нарушается под дей-

Таблица24. Некоторые медиаторы воспаления, синтез или действие которых снижается глюкокортикоидами

Интерферон Интерлейкин-1 Интерлейкин-2

Субстанции, стимулирующие естественные киллеры Простагландины Лейкотриены Брадикинин

Фактор активации тромбоцитов Гистамин Нейтральные протеазы

ствием глюкокортикоидов. Они также снижают поступление лимфоцитов в область клеточ-но- опосредованных иммунных реакций. Кроме того, уменьшается активность макрофагов, что отчасти связано с сокращением продукции лимфокинов, а также с понижением их чувствительности к действию лимфокинов. В результате начинается неконтролируемый рост туберкулезных бацилл и других микроорганизмов, которые в норме сдерживаются макрофагами, активированными лимфокинами.

Влияние глюкокортикоидов на воспалительную реакцию в одном из ее аспектов изучено особенно хорошо и будет описано ниже.

Влияние глюкокортикоидов на обменные процессы

и его связь с побочными эффектами

Глюкокортикоиды оказывают сильное влияние на метоболизм углеводов, уменьшая захват и утилизацию глюкозы, а также увеличивая глюконеогенез и отложение гликогена. Результирующим действием гормонов является тенденция к повышению уровня сахара в крови. Под действием глюкокортикоидов снижается синтез белка и усиливается их метаболизм, что приводит к отрицательному азотному балансу. В жировом обмене отмечается усиление липолиза за счет «пермиссивного» влияния на действие других липолитических гормонов. Вообще, роль глюкокортикоидов заключается в поддержании гомеостаза глюкозы за счет привлечения различных субстратов, таких как гликоген, белок и жиры.

Глюкокортикоиды обладают и некоторым влиянием на водный и электролитный баланс. Кроме того, они имеют важное значение в поддержании целостности мышечной, сердечнососудистой и центральной нервной систем.

Хотя системные метаболические эффекты

не имеют отношения к противовоспалительному действию глюкокортикоидов, их понимание необходимо для оценки побочных эффектов препаратов (см. ниже).

Глюкокортикоидные препараты, содержащие синтетические производные гидрокортизона

Кортикостероиды, образующиеся в коре надпочечников, обладают широким спектром ак- тивности-от минералокортикоидной, с одной стороны, до глюкокортикоидной-с другой. Так, альдостерон, главный эндогенный минералокортикоид, вызывает сильную задержку натрия в почках, но также оказывает некоторое влияние на метаболизм углеводов. Кортизол, основной глюкокортикоид, обладает очень сильным противовоспалительным действием и влияет на углеводный обмен; вместе с тем он проявляет и некоторую минералокортикоидную активность. При получении синтетических стероидов усилия были направлены на разделение противовоспалительных и минералокортикоидных эффектов. В табл. 25 приведены сравнительные данные о минералокортикоидной и глюкокортикоидной активности различных кортикостероидов, причем в качестве стандарта принята активность кортизола.

Другой задачей при разработке синтетиче-

Кортикостероиды 249

ских аналогов гидрокортизона (в отличие от обычных попыток получения новых патентованных средств) является увеличение длительности их действия. Совершенно очевидно (см. табл. 25), что период полураспада гидрокортизона очень короток и продолжительность действия некоторых его синтетических аналогов значительно его превышает. Это было достигнуто благодаря синтезу производных гидрокортизона (часто фторированных), которые обладают повышенным связыванием с рецептором (см. ниже), пониженным метаболизмом в организме и не связываются кортикостероидсвязывающим белком.

Совершенно очевидно, что эти сильные синтетические соединения обладают рядом преимуществ, связанных с удобством дозирования, быстротой и длительностью терапевтического действия. Однако указанные преимущества нередко нивелируются побочными эффектами, также более выраженными, чем у природного гормона.

Опасность длительного применения глюкокортикоидов

В терапии глюкокортикоиды применяются в основном для получения противовоспалительных и иммуносупрессивных эффектов. Они применяются в трансплантационной хирургии,

Таблица 25. Сравнительная активность природных и синтетических стероидов (в качестве стандарта принята активность гидрокортизона)

Неактивен; в активную форму переходит в организме. Сублингвальное введение.

Инъекция.

250 Глава 24

Таблица 26. Побочные эффекты длительной терапии глюкокортикоидами

Горб буйвола Лунообразное лицо

Повышенная кровоточивость (экхимозы) Гипертензия Остеопороз Мышечная слабость

Пониженная резистентность к инфекциям Истончение кожи Глаукома

а также при лечении заболеваний, при которых происходит неадекватное развитие иммунных реакций (аутоиммунные заболевания и различные формы гиперсенситивности). Это очень ценные препараты, порой даже спасающие жизнь. Однако при назначении глюкокортикоидов как противовоспалительных препаратов следует помнить, что они подавляют проявления воспаления, не устраняя его причины. Нормальная биологическая реакция на интеркуррентные инфекции также подавляется, поэтому активизируются латентные инфекции, например туберкулез.

В современных синтетических препаратах успешно разделены минералокортикоидная и глюкокортикоидная активность, поэтому некоторые глюкокортикоиды практически не обладают минералокортикоидной активностью.

Отделение противовоспалительной активности от метаболических эффектов оказалось безуспешным, поэтому использование глюкокортикоидов как противовоспалительных препаратов, особенно в течение длительного времени, чревато возникновением выраженного влияния на обмен углеводов, белков и жиров, а также подавлением активности системы гипоталамус - гипофиз - надпочечники. Резкое прекращение терапии чревато появлением у больного состояния адренокортикальной недостаточности.

Переносимость кратковременной терапии даже высокими дозами в целом великолепна. Проблемы возникают при хроническом лечении. Помимо пониженной резистентности к инфекции, которая вызывается тем же подавлением функции лейкоцитов (что лежит в основе большинства противовоспалительных эффектов), они включают нарушения метаболизма, составляющие классический синдром побочных эффектов глюкокортикоидов (табл. 26).

Внутриклеточные рецепторы глюкокортикоидов

В настоящее время хорошо известно, что подавляющее большинство (а возможно, и все) биологических эффектов глюкокортикоидов, имеющих эндогенное происхождение или введенных экзогенно, опосредуется сложным рядом событий, возникающих при связывании гормонов со специфическими внутриклеточными рецепторами.

Клетки большинства тканей организма обладают внутриклеточными стероидными рецепторами. Они представляют собой асимметричные белки с молекулярной массой 3000050000 дальтон. Плотность рецепторов составляет от 3000 до 100000 на клетку; рецепторы высокоаффинны, константа диссоциации-0,1-10 нМ. Стероиды легко проникают в клетку, и их взаимодействие с рецепторами приводит к изменению конформации рецептора, в результате чего открываются места связывания для ядерного материала. Рецептор состоит из двух субъединиц, участвующих в связывании стероидов. Одна субъединица несет также место связывания с белком хроматина, а другая-с ДНК. Комплекс движется в ядро и взаимодействует со специфическими контролирующими местами на чувствительных к стероидам генах, ускоряя или замедляя транскрипцию гена. В первом случае увеличивается синтез соответствующей информационной РНК, что приводит к повышению синтеза специфических белков. Эти белки представляют собой медиаторы эффектов стероидов (рис. 105). После взаимодействия комплекс рецептор - стероид диссоциирует вне ядра, а рецептор регенерирует. Предполагается, что стероиды, помимо транскрипционного контроля, описанного выше, осуществляют посттранскрипционный контроль, однако конкретных данных, свидетельствующих в пользу его существования, пока слишком мало. В большинстве же эффектов отрицательной обратной связи стероидов с гипоталамусом транскрипция, по-видимому, не вовлекается.

Участие синтеза информационной РНК и белка во многих эффектах стероидов становится очевидным при блокаде этих эффектов ингибиторами синтеза РНК и белка (актиномицином D и циклогексимидом). Также ясно, что глюкокортикоиды индуцируют ферменты не только in vitro, но и in vivo. Это может служить основой объяснения некоторых обменных эф-

Кортикостероиды 251

Рис. 105. Механизм действия глюкокортикоидов на внутриклеточные рецепторы.

КСГ-кортикостероидсвязывающий глобулин (в плазме); К - кортикостероид; Р-рецептор; иРНКинформационная рибонуклеиновая кислота.

фектов глюкокортикоидов, хотя известной индукцией ферментов не объясняются все вызванные метаболические изменения.

Аспириноподобноедействие глюкокортикоидов

Ко времени написания книги невозможно было дать полное объяснение противовоспалительного действия глюкокортикоидов, оказывающих влияние на воспаление на различных уровнях. Но по крайней мере некоторые их эффекты можно объяснить действием на фермент, встроенный в мембрану и называемый фосфолипазойИсследованиеА2,. приведшее к этому выводу, было предпринято в начале 70-х годов. Открытие угнетения биосинтеза простагландинов аспириноподобными препаратами (см. главу 25) побудило к изучению влияния других типов препаратов на образование простагландинов.

Предполагалось, что если фармакологическая активность аспириноподобных препаратов связана со способностью блокировать биосинтез простагландинов, то и другие противовоспалительные препараты могут иметь подобный механизм действия.

Интерес многих исследователей был привлечен к стероидам. При расшифровке механизма действия аспириноподобных препаратов было обнаружено, что стероидные противовоспалительные препараты не действуют на микросомную циклооксигеназу даже при очень высоких концентрациях. Однако стероидные препараты проявляют ряд эффектов аспириноподобных препаратов, которые, вероятно, связаны с угнетением биосинтеза простагландинов; поэтому сохранялось предположение о вмешательстве стероидов в обмен простагландинов. В табл. 27 сравнивается антициклооксигеназная активность четырех аспириноподобных препаратов и четырех противово-

252 Глава 24

Таблица 27. Различия в антиферментативной активности стероидных (звездочка) и аспириноподобных противовоспалительных препаратов

спалительных стероидов. Препараты обоих типов эффективны в системах, определяющих противовоспалительную активность (отек лапки крыс), но циклооксигеназу блокируют только аспириноподобные препараты. В связи с этими данными возникает и теоретическая проблема, поскольку непонятно, почему стероиды, будучи мощными противовоспалительными препаратами, не вмешиваются в биосинтез простагландинов. Означает ли это, что они имеют совершенно иной механизм действия? Или же простагландины не играют важной роли в воспалении? В ряде работ, опубликованных в начале и середине 70-х годов, убедительно показано, что стероиды способны блокировать образование простагландинов, хотя и при помощи механизма действия, отличного от аспириноподобных веществ.

Gryglewski и его сотрудники обнаружили, что кортикостероиды, гидрокортизон и дексаметазон предупреждают вызванное норадреналином выделение простагландинов в перфузируемых мезентериальных сосудах кроликов, а также антигениндуцированное выделение простагландинов в перфузируемых легких морских свинок. Прямое превращение арахиновой кислоты стероидами в этих моделях не блокировалось, поэтому место блока не связано ни с циклооксигеназой, ни с «механизмами выделения». Действительно, исследователи пришли к заключению, что кортикостероиды действуют посредством ограничения доступности субстрата. Эта точка зрения вскоре получила подтверждение в ряде исследований.

ние распада фосфолипидов и, следовательно, угнетение выделения арахидоната.

Для понимания этого факта следует вспомнить, что простагландины образуются из арахидоновой кислоты. В большинстве клеток количество свободной арахидоновой кислоты очень невелико, хотя в виде различных эфиров она присутствует в высоких концентрациях. Поскольку простагландины в клетке не хранятся (они выделяются немедленно после синтеза), фактором, лимитирующим скорость их биосинтеза, является доступность субстрата. Одной из начальных стадий формирования простагландинов является выделение из пула эфиров субстрата-арахидоновой кислоты. Наибольшее доверие внушает, гипотеза, согласно которой главным источником арахидоновой кислоты служат фосфолипиды, а фермент, необходимый для выделения субстрата, является фосфолипазой А2.

Подавлениеглюкокортикоидами фосфолипазыА2 в перфорируемом легком морских свинок

Перфузируемые легкие морских свинок наряду с множеством других систем биологического определения уже многие годы остаются излюбленным инструментом изучения образования и выделения простагландинов (рис. 106). Идея метода определения крайне проста. Оксигенированный раствор Кребса при температуре 37°С перфузируется со скоростью 5-10

Визящных экспериментальных работах, мл/мин через легочную артерию изолиро-

опубликованных в 1976 и 1977 гг. Levin и его

ванного легкого морских свинок. Содержимое

группа, используя культуры клеток, меченных

легочных вен направляется на ткани, выбран-

арахидоновой кислотой, содержащей тритий,

ные для биологической оценки. Для опреде-

смогли продемонстрировать подавле-

ления простагландиновых эндоперекисей пред-