Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭДиРРВ Лекции.doc
Скачиваний:
271
Добавлен:
28.03.2016
Размер:
4.89 Mб
Скачать
      1. Скаляры и векторы. Изображение векторов. Примеры скалярных и векторных величин

В теории электромагнитного поля применяется некоторый традиционный математический аппарат, без которого невозможно построить ясное и обозримое изложение. К числу математических средств, которые нам потребуются, относятся разделы векторной алгебры и векторного анализа. Эти разделы в общем знакомы из курса высшей математики, однако в нашем курсе они тоже будут кратко описаны.

Первым необходимым понятием являются скалярные и векторные величины.

В математике и технике приходится иметь дело с величинами двух родов: одни из величин связаны с понятием о направлении в пространстве, другие имеют чисто числовой характер и не связаны с направлением. Рассмотрим например, температуру, массу, плотность, энергию, перемещение точки, скорость, ускорение, силу. Четыре последние величины резко отличаются от первых тем, что с ними обязательно должно быть связано понятие о направлении: например, точка может перемещаться вверх или вниз, вперед или назад.

Наоборот, температура, например, не имеет направления. и чтобы охарактеризовать ее, мы должны измерить ее например, в градусах Цельсия, полученное число и даст величину температуры. Точно так же можно измерить в соответствующих единицах массу, плотность и т.п. Эти величины принадлежат к классу величин, называемых скалярами.

Скаляром называется величина, характеризующаяся при выбранной единице меры одним числом.

Рассмотрим теперь один из векторов – скорость точки. Указания величины скорости, измеренной, например в м\с недостаточно для характеристики скорости. Нужно еще знать направление движения точки. Точно так же имеют определенное направление и ускорение точки, и сила, действующая на точку. Дадим поэтому следующее определение:

Вектором называется величина, характеризующаяся, помимо измеряющего ее числа, еще своим направлением в пространстве.

Простейшим вектором является прямолинейный отрезок , имеющий определенну величину – длинуАВи определенное направление – от начальной точкиАк конечной точкеВ.

На чертежах векторы изображаются стрелками (рисунок Error: Reference source not found). Направление стрелки указывает на направление вектора, длина стрелки дает длину вектора. Обычно векторы обозначаются жирными латинскими буквами: , но при письме от руки это неудобно, поэтому мы будем пользоваться буквами со стрелкой: .

  1. − Вектор AB

Иногда приходится рассматривать величины тоже направленного характера, но более сложного, чем векторы, строения. Эти величины называются тензорами. Мы рассмотрим их позднее.

      1. Операции над векторами. Скалярное, векторное, смешанное произведение

Векторное исчисление должно ввести ряд операций с векторами и тензорами, как например сложение, умножение, дифференцирование, и изучить эти операции. Эти операции определяются таким образом, чтобы при их помощи легко было интерпретировать те комбинации векторов, которые приходится изучать. В результате как основные элементы векторного исчисления – вектор и тензор, так и операции над ними оказываются хорошо приспособленными для изучения тех физических явлений, в которых большую роль играет направление величин. С одной стороны, это упрощает исследование, с другой, ведет его более естественным и наглядным образом, не требуя введения посторонних элементов.

Рассмотрим, как определяется величина и направление вектора.

Векторы , можно представить как, и, где,− единичные векторы, называемые также ортами, а числаа,b− абсолютные значения векторов, .

Орты, соответствующие направлениям осей x,y,zдекартовой координат, будут обозначаться,,(рисунок Рисунок 2 ). Любой вектортогда можно представить в виде разложения, где,,являются его проекциями на оси декартовой системы координат. Они также называются компонентами (составляющими) вектора.

Положение какой-либо точки пространства P может быть определено вектором , начальной точкой которого служит некоторая, определенным образом выбранная точкаO, а концом – точкаP. Вектор мы будем называть радиусом-вектором точкиP относительно точкиОи будем обозначать обычно как. Про точкуP, заданную радиусом-вектором, мы будем говорить, для краткости, что дана точка.

  1. −Орты декартовой системы координат и радиус-вектор

Сложение векторов векторов сводится к сложению их компонент:

,

эта операция обозначается с помощью обыкновенного знака алгебраического сложения: . Сложение обладает свойством коммутативности: сумма не меняется от перестановки слагаемых:.

Геометрически это выглядит, как показано на рисунке Рисунок 3 .

  1. - Сложение векторов

Скалярное произведение необходимо, например, в механике при вычислении работы, производимой постоянной силой при прямолинейном перемещении и при условии, что сила действует под углом α к перемещению. Работа в этом случае вычисляется как скалярное произведение вектора силы и вектора перемещения. Скалярное произведение двух произвольных векторов определяется как , то есть произведение их длин, умноженное на угол между ними (рисунок Рисунок 4 ). Результатом скалярного произведения является скаляр.

  1. - Скалярное произведение

Векторное произведение. К необходимости рассматривать такую операцию приводят требования геометрического и физического характера.

Векторным произведением векторов иназывается вектор, по величине равный площади параллелограмма, построенного на векторахи, перпендикулярный плоскости этих векторов и направленный в такую сторону, чтобы вращение откна кратчайшем пути вокруг полученного вектора происходило в ту же сторону, как вращение осиxк осиyвокруг осиz(рисунок Рисунок 5 ).

  1. −Векторное произведение

Векторное произведение вычисляется как

,

тогда компоненты векторного произведения получаются из раскрытия определителя:

Изменение порядка сомножителей приводит к изменению знака векторного произведения: .

Размерность векторного произведения – единицы измерения площади, т.е. квадратные метры.

Кроме описанных операций сложения, скалярного и векторного произведений, мы будем использовать векторные дифференциальные операторы. Их определение дается позже, непосредственно перед использованием.