Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ ВКМ.doc
Скачиваний:
49
Добавлен:
08.11.2018
Размер:
3.49 Mб
Скачать

§3. Кортежи и декартовы произведения множеств

n1. Понятие кортежа

Понятие кортежа будем считать основным, неопределяемым (слово кортеж происходит от французского слова «cortege» – торжественное шествие). Ограничимся интуитивным описанием этого понятия.

Пусть имеем объекты: а1, а2, …, аn, среди которых могут быть совпадающие, при этом, исходя из некоторых соображений, объект а1 считается 1-ым, объект а2 считается 2-ым, и так далее, наконец объект аn считается n-ым. Тогда будем говорить, что имеем кортеж или упорядоченный набор (а1; а2; …; аn) длины n, называя объекты а1, а2, …, аn соответственно 1-ой, 2-ой, …, n-ой компонентами этого кортежа. Кортежи длины 2 иногда называют парами, длины 3 – тройками, длины 4 – четверками, и так далее.

(а1; а2;…; аn) = (в1; в2;…; вn) тогда и только тогда, когда а11 и а22 и ... и апп.

Если а1, а2, а3 – числа, то пару (а1; а2) можно изобразить точкой M(а1; а2) на координатной плоскости (0xy), а тройку (а1; а2; а3) можно изобразить точкой N(а1; а2; а3) в пространственной системе координат (0xyz).

n2. Декартовы произведения множеств

Определение 4. Пусть А1, А2, … Аn, где nN и n>1, – некоторые непустые множества. Декартовым произведением данных множеств называется множество, обозначаемое символом А1А2…Аn и состоящее из всевозможных кортежей вида (а1, а2, …, аn), где а1А1, а2А2, … , аnAn. Если А1=А2=…=An=А, то вместо символа А1А2…An иногда используется символ An, причем множество An называется n-ой декартовой степенью множества А. Множества А2 и А3 называется еще декартовым квадратом и кубом множества А соответственно.

Итак, А1А2 …An{(а1; а2; …; аn) | а1А1 и а2А2 и … и аnAn}.

Если А1, А2, А3 – числовые множества, то множество А1А2 можно изобразить на координатной плоскости (0ху) множеством {M(х; у) | хАи уА2}, а множество А1А2А3 можно изобразить множеством {M(х; у; z)| хАи уА2 и zА3} в пространственной системе координат (0xyz).

Пример. Найти АВ, если 1) А = {m; n; q} и В = {; }; 2) А=[2;3] и В=[1; +].

Решение. 1) АВ{(а; в) | аА и вВ} = {(m;  ); (m; ); (n;  ); (n; ); (q;  ); (q; )}.

2) АВ{(а; в) | 2a3 и в1}. Так как A и B – числовые множества, то декартово произведение AB можно изобразить на координатной плоскости (0ху) множеством {M(х; у) | хA и уB}, то есть множеством {M(х; у) | 2х3 и у1}. Сравнивая AB с множеством BA = {(а; в) | а1 и 2в3}, убеждаемся, что ABBA. Действительно, например, (2; 4)(АВ), но (2; 4)(ВА).

Как следует из рассмотренного выше примера, декартово произведение двух множеств не обладает свойством коммутативности.

n3. Размещения с повторениями и без повторений

Определение 5. Пусть X – данное n-элементное множество. Любой кортеж длины k, где k, nN, компоненты которого принадлежат множеству Х, называется размещением с (возможными) повторениями из n элементов множества Х по k. Любой кортеж длины k, где k, nN, k≤n, компоненты которого попарно различны и принадлежат множеству Х, называется размещением без повторений из n элементов множества Х по k. Всякое размещение без повторений n элементов множества Х по n называется еще перестановкой без повторений n элементов множества Х.

Символами , , Pn обозначаются соответственно число всех размещений с (возможными) повторениями из n элементов по k, число всех размещений без повторений из n элементов по k и число всех перестановок без повторений n элементов множества Х.

Согласно этому определению семейство всех размещений с (возможными) повторениями из n элементов множества Х по k совпадает с декартовой степенью Хk и включает в себя семейство всех размещений без повторений из n элементов множества Х по k.

Если n, kN, то имеет место формула: = nk.

Если же n, kN и kn, то = n (n–1)(nk+1).

Полагая в последней формуле k=n, получаем формулу для вычисления общего числа перестановок без повторений n элементов множества Х: Рn==n(n–1)(n–2)…21=n!, то есть Рn= n! (для натурального числа n произведение 123…(n–1) n обозначается символом n! и называется n-факториалом; например, 5! 12345=120).

Пример. Для множества Х={; ; ; ; } привести примеры размещений с (возможными) повторениями и без повторений, перестановки его элементов. Вычислить , и Р5.

Решение. ( ; ; ; ; ; ; ), (; ; ) – размещения с (возможными) повторениями из 5-ти элементов множества Х по 6 и 3 соответственно.

(; ; ; ), (; ; ) – размещение без повторений из 5-ти элементов множества Х по 4 и 3 соответственно.

(; ; ; ;  ) и ( ; ; ; ; ) – перестановки без повторений данных 5-ти элементов множества X.

По приведенным выше формулам находим, что =53=125, =54(5–3+1)=543=60 и Р5=5!=12345=120.