Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по МЖГ(2011).docx
Скачиваний:
53
Добавлен:
14.04.2019
Размер:
4.21 Mб
Скачать

6.2 Степенные законы распределения скоростей

(12.23)

Главным достоинством этих формул является их простота, а недостатком - зависимость показателя степени от числа Рейнольдса. Поэтому степенной закон нельзя рассматривать как универсальный. В диапазоне изменения чисел показатель степени 1/n меняется в пределах от 1/6 до 1/10.

Следует отметить, что ни логарифмический, ни степенной законы не удовлетворяют условию равенства нулю производной от скорости на оси симметрии потока.

6.3 Модели турбулентности

В настоящий момент создано большое количество разнообразных моделей для расчёта турбулентных течений. Они отличаются друг от друга сложностью решения и точностью описания течения.

Ниже перечислены модели по возрастанию сложности. Основная идея моделей сводится к предположению о существовании средней скорости потока и среднего отклонения от него. u После упрощения уравнений Навье — Стокса, в них помимо неизвестных средних скоростей появляются произведения средних отклонений ui' uj'. Различные модели по-разному их моделируют.

Перечисленные ниже модели применяются в различных инженерных расчётах в зависимости от необходимой точности. Практически все они реализованы в современных программах расчёта гидродинамических течений, таких как Fluent, CFX или OpenFOAM.

  1. Модель Буссинеска (Boussinesq). Уравнения Навье — Стокса преобразуется к виду, в котором добавлено влияние турбулентной вязкости.

  2. модель Спаларта-Альмараса. В данной модели решается одно дополнительное уравнение переноса коэффициента турбулентной вязкости

  3. k − ε модель. Уравнения движения преобразуется к виду, в котором добавлено влияние флуктуации средней скорости (в виде турбулентной кинетической энергии) и процесса уменьшения этой флуктуации за счёт вязкости (диссипации). флуктуация:колебания или незначительные изменения некого параметра относительно среднего значения. В данной модели решается 2 дополнительных уравнения для транспорта кинетической энергии турбулентности и транспорта диссипации (рассеяние) турбулентности. Наиболее часто используемая модель при решении реальных инженерных задач. См. также каскадные модели.

  4. k − ω модель. Похожа на предыдущую, вместо уравнения диссипации решается уравнение для скорости диссипации турбулентной энергии.

  5. Модель напряжений Рейнольдса. В рамках усреднённых по Рейнольдсу уравнений (RANS) решается 7 дополнительных уравнений для транспорта напряжений Рейнольдса.

  6. Метод крупных вихрей (LES, large eddy simulation). Занимает промежуточное положение между моделями, использующими осреднённые уравнения Рейнольдса и DNS. Решается для больших образований в жидкости. Влияние вихрей меньше, чем размеры ячейки расчётной сетки, заменяется эмпирическими моделями.

  7. Прямое численное моделирование (DNS, direct numerical simulation). Дополнительных уравнений нет. Решаются нестационарные уравнения Навье — Стокса с очень мелким шагом по времени, на мелкой пространственной сетке. По сути не является моделью. Из-за громадного объёма информации, полученной при численном моделировании, ценность представляют средние значения потока, полученные при решении задачи с которыми могут сравниваться другие модели.

Все модели имеют преимущества и недостатки. Области применения, для которых получены модельные постоянные на основе сравнения результатов расчёта с экспериментами, ограничены. Например, k − ε модель плохо подходит для областей с вихрем.