Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
23 шпоры.docx
Скачиваний:
13
Добавлен:
15.04.2019
Размер:
870.69 Кб
Скачать

30. Частотный метод анализа электрических цепей

При частотном методе анализа электрическая цепь задается своими частотными характеристиками (АЧХ и ФЧХ), которые в большинстве практических случаев могут быть просто измерены или рассчитаны. При этом необходимо определить реакцию на произвольное (негармоническое) воздействие. Поскольку частотные характеристики являются характеристиками установившегося режима гармонических колебаний, то целесообразно произвольное воздействие представить в виде совокупности гармонических и реакцию линейной цепи искать как совокупность реакций, вызванных каждым гармоническим воздействием в отдельности. Таким образом, частотный метод анализа включает в себя задачу частотного или спектрального представления воздействия в виде суммы гармонических составляющих с определенными амплитудами, начальными фазами и частотами, а также задачу определения реакций цепи на каждую гармоническую составляющую воздействия и их суммирование.Сформулированные задачи наиболее просто решаются для периодических негармонических воздействий, которые при некоторых ограничениях могут быть представлены в виде гармонического ряда Фурье.

Пусть на входе некоторой линейной системы действует входной сигнал u1(t), заданный в виде интеграла Фурье:

(4.12)

Линейная система задана своими частотными характеристиками, а именно: АЧХ - |H(jω)| и ФЧХ - θ(ω). Имея в виду, что (4.12) является интегральной суммой гармонических составляющих, и применяя принцип суперпозиции, можно вычислить реакцию u2(t) на выходе системы с помощью частотных характеристик аналогично тому, как это было сделано для периодического воздействия в разделе 4.3. Тогда получим:

(4.13)

Полученное соотношение (4.13) является интегралом Фурье для выходного сигнала. Причем, спектральные характеристики выходного сигнала

|U2(jw )| = |U1(jw )| × |H(jw )| , j 2(w ) = j 1(w ) +q (w ).

(4.14)

Очевидно, что формулы (4.14) можно объединить в одну

U2(jw ) = U1(jw ) × H(jw ) ,

(4.15)

где U1(jω)=|U1|× exp(jj 1), U2(jω)=|U2|× exp(jj 2)– комплексные спектральные плотности воздействия и реакции; H(jω)=|H|× exp(jq )– комплексная функция передачи системы.Таким образом, при спектральном анализе, эффект преобразования сигнала в системе отображается простой алгебраической операцией умножения. Зная АЧХ и ФЧХ цепи, можно найти спектральные характеристики и саму реакцию на любое воздействие, которое может быть представлено интегралом Фурье. Спектральный метод анализа особенно удобен, если система имеет простые (идеализированные) частотные характеристики.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]