Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика. Термодинамика. Глагольев, Морозов.doc
Скачиваний:
512
Добавлен:
01.05.2014
Размер:
5.25 Mб
Скачать

5.5. Экспериментальная проверка распределения Максвелла

     Первым экспериментальным подтверждением существования распределения молекул по скоростям можно считать результаты опыта Штерна, описанного в параграфе 2.3. Но точность этого опыта была недостаточной для установления конкретного вида распределения.

     Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом. Упрощенная схема этого эксперимента показана на рис. 5.6.

Рис. 5.6. Схема опыта Ламмерта 1 - быстро вращающиеся диски, 2 - узкие щели, 3 - печь, 4 - коллиматор, 5 - траектория молекул, 6 - детектор

     Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5, параллельной их оси. В установке Ламмерта в дисках было сделано множество щелей (они на рисунке не изображены) с целью увеличения интенсивности прошедшего пучка. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.

     При вращении дисков с постоянной угловой скоростью , через их прорези беспрепятственно проходили только атомы, имевшие скорость:

     

,

(5.75)

     где - расстояние между вращающимися дисками.

     Изменяя угловую скорость вращения дисков можно было отбирать из пучка молекулы, имеющие определенную скорость , и по регистрируемой детектором интенсивности судить об относительном содержании их в пучке.

     Таким способом удалось экспериментально проверить статистический закон распределения молекул по скоростям. Позже, когда при создании ядерного оружия возникла необходимость выделения нейтронов с определенной кинетической энергией, подобная схема была применена в устройстве, названным нейтронным монохроматором, позволяющим получать энергетические спектры нейтронов.

     Несколько иначе был организован эксперимент по определению распределения по скоростям для атомов цезия, выполненный в 1947 году немецким физиком-экспериментатором Иммануэлем Эстерманом (1900 - 1973) совместно с О. Симпсоном и Штерном. На рис. 5.7. приведено схематическое изображение опыта Эстермана. Пучок атомов цезия вылетал через отверстие в печи 1 с некоторой скоростью и под действием силы тяжести начинал двигаться по параболе. Атомы, прошедшие через узкую щель в диафрагме 2, улавливались детектором 3, который можно было располагать на различных высотах.

Рис. 5.7. Схема опыта Эстермана 1 - печь, 2 - диафрагма с узкой щелью, 3 - детектор

     Величина отклонения пучка в гравитационном поле Земли зависела от скорости атома. В этих опытах отклонениесоставляло величину порядка нескольких долей миллиметра при расстоянииот печи до детектора равном 2 метрам. Перемещая датчик и регистрируя количество атомов цезия, попадающих в детектор за единицу времени, можно было построить зависимость интенсивности пучка от величины. Последующий пересчет, с учетом известной зависимости высотыот скорости атома, давал распределение по скоростям атомов цезия.

     Все проведенные эксперименты подтвердили справедливость полученного Максвеллом распределения по скоростям для атомных и молекулярных пучков.