Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Physics of strongly coupled plasma (2006).pdf
Скачиваний:
85
Добавлен:
01.05.2014
Размер:
5.58 Mб
Скачать

REFERENCES

59

was maintained by fairly long current pulses of up to 103 ms; (ii) use was made of capillaries with open ends, through which the discharge current had been introduced, while the sink of the plasma generated under conditions of wall evaporation occurred in the form of plasma jets; (iii) the relative variation of the capillary diameter due to its burning out was small. Investigations have shown that the capillary discharge with evaporating wall allows the derivation of a quasistationary homogeneous plasma of desired chemical composition.

The capillary discharge with evaporating wall is characterized by a high level of temperatures at moderate pressures. Depending on the level of energy contribution, the nonideality parameter ranges from 0.5 to 1.25. The capillary discharge with evaporating wall was used to measure the spectral absorption factor of continuous radiation and the electrical conductivity.

References

Alekseev, V. A. (1968). Electrical conductivity of cesium at supercritical temperatures and pressures. High Temp., 6, 923–927.

Alekseev, V. A. and Iakubov, I. T. (l983). Nonideal plasmas of metal vapors.

Phys. Rep., 96, 1–69.

Alekseev, V. A. and Iakubov, I. T. (1986). Electrical conductivity and thermoelectromotive force of alkali metals. In Handbook on thermodynamic and transport properties of alkali metals , Ohse, R. W. (ed.), pp. 703–734. Blackwell, Oxford.

Alekseev, V. A., Ovcharenko, V. G., Rizhkov, Y. F., and Senchenkov, A. P. (1970a). Equation of state of cesium at pressures 20–600 atm and temperatures 500–2500 C. JETP Lett., 12, 207–210.

Alekseev, V. A., Vedenov, A. A., Krasitskaya, L. S., and Starostin A. N. (1970b). Thermoelectric power of cesium near critical temperatures and pressures. JETP Lett., 12, 501–504.

Alekseev, V. A., Starostin, A. N., Vedenov, A. A., and Ovcharenko, V. G. (1972). Nature of thermoelectric power of mercury in transcritical state. JETP Lett., 16, 49–53.

Alekseev, V. A., Vedenov, A. A., Ovcharenko, V. G., Krasitskaya, L. S., Rizhkov, Y. F., and Starostin, A. N. (1975). The e ect of saturation on the thermo-e.m.f. of caesium at high temperatures and pressures. High Temp. High Press., 7, 677–679.

Alekseev, V. A., Ovcharenko, V. G., and Rizhkov, Y. F. (1976). The metal– dielectric transition in liquid metals and semiconductors at high temperatures and pressures in the region of the critical point. Sov. Phys. Uspechi, 19, 1027– 1029.

Altshuler, L. V., Bushman, A. V., Zhernokletov, M. V., Zubarev, V. N., Leontiev, A. A., and Fortov, V. E. (1980). Release isentropes and the equation of state of metals at high energy densities. JETP, 51, 373–383.

Andreev, S. I. and Gavrilova, T. V. (1974). Investigation of a pulsed stabilized discharge in air at a pressure above 100 atm. High Temp., 12, 1138–1142.

60 ELECTRICAL METHODS OF NONIDEAL PLASMA GENERATION

Andreev, S. I. and Gavrilova, T. V. (1975a). Measurement of electrical conductivity of air plasma at pressures above 100 atm. High Temp., 13, 151–153.

Andreev, S. I. and Gavrilova, T. V. (1975b). Measurement of spectral absorption coe cient and total radiation coe cient of an air plasma at pressures above 100 atm. High Temp., 13, 584–586.

Asinovskii, E. I. and Zheigarnik, V. A. (1974). High pressure discharges. High Temp., 12, 1120–1135.

Barolskii, S. G., Kulik, P. P., Ermokhin, N. V., and Melnikov, V. M. (1972). Measurement of electrical conductivity of dense highly nonideal cesium plasma. JETP, 62, 176–182.

Batenin, V. M. and Minaev, P. V. (1970). High–temperature stationary plasma brightness source. High Temp. High Press., 2, 597–607.

Benage, J. F., Shanahan, W. R., and Murillo, M. S. (1999). Electrical resistivity measurements of hot dense aluminum. Phys. Rev. Lett., 83, 2953–2956.

Borzhievsky, A. A., Sechenov, V. A., and Horunzhenko, V. I. (1987). Experimental investigation of electrical conductivity of cesium vapour. In Proceedings of the 18th International Conference on Ionization Phenomena in Gases.

Contributed Papers, Swansea. Vol. 1, pp. 250–251.

Chelebaev, A. K. (1978). Measurements of equation of state parameters for dense steams of cesium. D. Phil. thesis, MAI, Moscow.

Cheshnovsky, O., Even, U., and Jortner, J. (1981). The polarization catastrophe and the metal–nonmetal transition in disordered materials. Phil. Mag. A, 44, 1–7.

DeSilva, A. W. and Katsouros, J. D. (1998). Electrical conductivity of dense copper and aluminum plasmas. Phys. Rev. E, 57, 5945–5951.

DeSilva, A. W. and Kunze, H.–J. (1994). Experimental study of the electrical conductivity of strongly coupled copper plasmas. Phys. Rev. E, 49, 4448–4454.

Dikhter, I. Y. and Zeigarnik, V. A. (1975). Electrical explosion of a cesium wire at pressures up to 500 atm. High Temp., 13, 447–454.

Dikhter, I. Y. and Zeigarnik, V. A. (1977). Equation of state and conductivity of a highly ionized cesium plasma. High Temp., 15, 196–198.

Dikhter, I. Y. and Zeigarnik, V. A. (1981). Equation of state and electrical conductivity dense strongly ionized plasma of alkali metals. In Review on thermophysical properties of matter. No. 4, pp. 59–102. IVTAN, Moscow.

Duckers, L. J. and Ross, R. G. (1972). Thermoelectric power of supercritical fluid mercury. Phys. Lett. A, 38, 291–294.

Ermokhin, N. V., Ryabyi, V. A., Kovalev, B. M., and Kulik, P. P. (1971). Experimental investigation of coulomb interaction in dense plasma. High Temp., 9, 611–620.

Franz, G., Freyland, W., and Hensel, F. (1981). (unpublished).

Freyland, W. and Hensel, F. (1972). Electrical properties of metals in liquid–gas critical region. Ber. Bunsenges. Phys. Chem., 76, 348–349.

Gathers, G. R. (1983). Thermophysical properties of liquid copper and aluminum. Int. J. Termophys., 4, 209–226.

REFERENCES

61

Gathers, G. R., Shaner, J. W., and Young, D. A. (1974). Experimental, very high temperature, liquid uranium equation of state. Phys. Rev. Lett., 33, 70– 72.

Gathers, G. R., Shaner, J. W., and Bri, R. L. (1976). Improved apparatus for thermophysical measurements on liquid metals up to 8000 K. Rev. Sci. Instruments, 47, 471–479.

Gathers, G. R., Shaner, J. W., and Hodson, W. M. (1979). Thermodynamic characterization of liquid metals at high temperature by isobaric expansion measurements. High Temp. High Press., 11, 529–538.

Gogoleva, V. V., Zitserman, V. Y., Polishchuk, A. Y., and Iakubov, I. T. (1984). Electrical conductivity of an alkali–metal–vapor plasma. High Temp., 22, 163– 170.

G¨unter, K. (1968). Elektrische Eigenschaften von Xenon–Impulsplasmen. Beitr. Plasma Phys., 8, 383–401.

Hefner, W. and Hensel, F. (l982). Dielectric anomaly and the vapor–liquid phase transition in mercury. Phys. Rev. Lett., 48, 1026–1028.

Hefner, W., Schmutzler, R. W., and Hensel, F. (1980). Measurements of optical parameters of mercury in region of metal–dielectric transition. J. de Phys., 41, suppl., 8–11.

Hensel, F. (1970). Optical absorption measurements for gaseous mercury at supercritical temperatures and high densities. Phys. Lett. A, 31, 88–89.

Hensel, F. (1971). Pressure dependence of optical absorption of gaseous mercury up to 1700 C and 2200 bar. Ber. Bunsenges. Phys. Chem., 76, 847–851.

Hensel, F. (1977). (unpublished).

Hensel, F. and Franck, E. U. (1968). Metal–nonmetal transition in dense mercury vapor. Rev. Mod. Phys., 44, 697–703.

Iakubov, I. T. (1977). Thermal instability of nonideal current–carrying plasmas of metal vapors. Beitr. Plasma Phys., 17, 221–227.

Ikezi, H., Schwarzenegger, K., Simons, A. L., Passner A. L., and McCall, S. L. (1978). Optical properties of expanded fluid mercury. Phys. Rev. A, 18, 2494–2499.

Isakov, I. M. and Lomakin, B. N. (1979). Measurement of electric conductivity during adiabatic compression of cesium vapors. High Temp., 17, 222–225.

Ivanov, V. V., Shvets, I. S., and Ivanov, A. V. (1982). Underwater spark discharges. Naukova Dumka, Kiev.

Jungst S., S., Knuth, B., and Hensel, F. (1985). Observation of singular diameters in the coexistence curves of metals. Phys. Rev. Lett., 55, 2160–2163.

Kikoin, I. K. and Senchenkov, A. P. (1967). Electrical conductivity and equation of state of mercury in temperature range 0–2000 C and pressure range of 200– 5000 atm. Phys. Metals and Metallography–USSR, 24, 74–87.

Kikoin, I. K., Senchenkov, A. P., Gelman, E. V., Korsunskii, M. M., and Naurzakov S. P. (1966). Electrical conductivity and density of a metal vapor. JETP, 22, 89–91.

Kikoin, I. K., Senchenkov, A. P., Naurzakov, A. P. (1973). (unpublished).

62 ELECTRICAL METHODS OF NONIDEAL PLASMA GENERATION

Kloss, A., Rakhel, A. D., and Hess, H. (1998). Experimental results on tungsten wire explosions in air at atmospheric pressure – Comparison with one– dimensional numerical model. Int. J. Thermophys., 19, 983–991.

Korobenko, V. N., Rakhel, A. D., Savvatimskiy, A. I., and Fortov, V. E. (2002). Measurement of the electrical resistivity of tungsten in continuous liquid–to– gas transition. Plasma Phys. Rep., 28, 1008–1016.

Korobenko, V. N., Rakhel, A. D., Savvatimskiy, A. I., and Fortov, V. E. (2005). Measurement of the electrical resistivity of hot aluminum passing from the liquid to gaseous state at supercritical pressure. Physical Review B, 71, 014208/1– 10.

Korshunov, Y. S., Senchenkov, A. P., Asinovskii, E. I., and Kunavin, A. T. (1970). Measurement of P–V–T dependence for cesium at high temperatures and pressures, and estimation of parameters of critical point. High Temp., 8, 1207–1210.

Kulik, P. P., Ryabii, V. A., and Ermokhin, N. V. (1984). Nonideal plasma. Energoatomizdat, Moscow.

Kuznetsova, N. I. and Lappo, G. B. (1979). Optical properties of alkali–metal plasmas consisting of lithium, sodium, and potassium. High Temp., 17, 32–40.

Lebedev, S. V. (1957). Explosion of a metal by an electric current. JETP, 5, 243–252.

Lebedev, S. V. (1966). Initial heating stage of exploding wires, JETP, 23, 337– 346.

Lebedev, S. V. and Savvatimskii A. I. (1984). Metals under fast heating by electric current of high density. Phys. Uspechi, 144, 215–250.

Lomakin, B. N. and Lopatin, A. D. (1983). Electrical conductivity of compressed vapors of cesium and potassium. High Temp., 21, 190–193.

Lyon, S. P. and Johnson, J. D. (eds). (1992). SESAME: The Los Alamos national laboratory equation of state database. Report No. LA–UR–92–3407.

Martin, E. A. (1960). Experimental investigation of high–energy density, high– pressure arc plasma. J. Appl. Phys., 31, 255–267.

Mitin, P. V. (1977). Stationary and pulse arcs of high and ultrahigh pressure and methods of theirs diagnostics. In Properties of low temperature plasmas and diagnostics methods, Zhukov, M. F. (ed.), pp. 105–138. Nauka, Novosibirsk.

Naugol’nykh, K. A. and Roy, N. A. (1971). Electrical discharges in water. Nauka, Moscow.

Neale, F. E. and Cusack, N. E. (1979). Thermoelectric power near the critical point of expanded fluid mercury. J. Phys. F, 9, 85–94.

Noll, F., Pilgrim, W. C., and Winter, R. (1988). Electrical–conductivity of NaNH3 and cesium in the critical region. Z. Phys. Chemie., 156, 303–307.

Novikov, I. I. and Roshchupkin, V. V. (1967). Experimental evaluation of PVT relationship of cesium vapors. Measurement techniques–USSR, 10, 1193–1195.

Ogurtsova, N. N. and Podmoshenskii, I. V. (1967). (unpublished).

Ogurtsova, N. N., Podmoshenskii, I. V., and Smirnov, V. L. (1974). Measurement of the electrical conductivity of a nonideal plasma at 38 000 K and pres-

REFERENCES

63

sure (5-25)·107 N/m2. High Temp., 12, 559–561.

Peters, T. H. (1953). Temperatur und Strahlungsmessungen am wasserstabilisieten Hochdruckbogen. Z. Phys., 135, 573–592.

Pfeifer, H. P., Freyland, W. F., and Hensel, F. (1973). Absolute thermoelectric power of fluid cesium in metal–nonmetal transition range. Phys. Lett. A, 43, 111–112.

Pfeifer, H. P., Freyland, W., and Hensel, F. (1979). Equation of state and transport data on expanded liquid rubidium up to 1700 C and 400 bar. Ber. Bunsenges. Phys. Chem., 83, 204–211.

Popovic, M. M., Popovic, S. S., and Vukovic, S. M. (1974). Distribution of electrical conductivity and density along section of plasma Coulomb of high pressure arc. Fizika, 6, 29–35.

Radtke, R. and G¨unter, K. (1976). Electrical conductivity of highly ionized dense hydrogen plasma. 1. Electrical measurements and diagnostics. J. Phys. D, 9, 1131–1138.

Rakhel, A. D., Kloss, A., and Hess, H. (2002). On the critical point of tungsten.

Int. J. Thermophys., 23, 1369–1380.

Renaudin, P., Blancard, C., Faussurier, G., and Noiret, P. (2002). Combined pressure and electrical resistivity measurements of warm dense aluminum and titanum plasmas. Phys. Rev. Lett., 88, 215001/1–4.

Renkert, H., Hensel, P., and Franck, E.U. (1969). Metal–nonmetal transition in dense cesium vapor. Phys. Lett. A., 30, 494–495.

Renkert, H., Hensel, P., and Franck, E. U. (1971). Electrical conductivity of liquid and gaseous cesium up to 2000 C and 1000 bar. Ber. Bunsenges. Phys. Chem., 75, 507–512.

Robinson, J. W. (1957). Measurements of plasma energy density and conductivity from 3 to 120 kbar. J. Appl. Phys., 38, 210–216.

Rochling, G. (1963). Adv. Energy Conversion, 3, 69–75.

Saleem, S., Haun, J., and Kunze, H.–J. (2001). Electrical conductivity measurements of strongly coupled W plasmas. Phys. Rev. E, 64, 056403/1–6.

Savvatimski, A. I. (1996). Experiments on expanded liquid metals at high temperatures. Int. J. Thermophys., 17, 495–505.

Sechenov, V. A., Son, E. E., and Shchekotov, O. E. (1977). Electrical conductivity of a cesium plasma. High Temp., 15, 346–349.

Shaner, J. W., Hixson, R. S., and Winkler, M. A. (1986). (unpublished). Stone, J. P., Ewing, C. T., Spann, J. R., Steinkul, E. W., Williams, D. D., and

Miller, R. R. (1966). High temperature PVT properties of sodium, potassium, and cesium. J. Chem. Eng. Data, 11, 309–311.

Suzuki, K, Inutake, M., and Fujiwaka, S. (1977). (unpublished).

Themperly, G. M., Rowlinson, J., and Rushbrooke, G. (eds). (1968). Physics of simple liquids. North–Holland, Amsterdam.

Tsuji, K., Yao, M., and Endo, H. (1977). Electrical conductivity and thermoelectric power of expanded mercury and dilute amalgams. 1. Hg and Cd amalgams. J. Phys. Soc. Jap., 42, 1594–1600.

64 ELECTRICAL METHODS OF NONIDEAL PLASMA GENERATION

Uchtmann, H. and Hensel, F. (1975). Density dependence of optical gap of compressed mercury vapor. Phys. Lett. A, 53, 239–240.

Uchtmann, H., Popielawski, J., and Hensel, F. (1981). Radiation emitted by a slightly ionized nonideal high–pressure plasma. Ber. Bunsenges. Phys. Chem., 85, 555–558.

Vasil’ev, I. N. and Trelin, Y. S. (1969). Fixed distance acoustic pulse measurement of speed of ultrasound in gaseous and vapor media at high temperatures. High Temp., 7, 1035–1041.

Vitel, Y., Mokhtari, A., and Skowronek, M. J. (1990). Electrical conductivity and pertinent collision frequencies in nonideal plasma with only a few particles in the Debye sphere. J. Phys. B: At. Mol. Phys., 23, 651–660.

Volyak, L. D. and Chelebaev, A. K. (1976). Measurement of the PVT parameters of cesium vapor. High Temp., 14, 913–921.

Vorobiov, V. V., Kulik, P. P., Pallo, A.V., Rozanov, E. K., and Riabyi, V. A. (1981). Experimental study of the non–ideality of radiative heat conductivity of dense alkali plasmas. In Proceedings of the XV symposium on phenomena in ionized gases. Contributed papers, Part 1. Minsk, pp. 361–362.

Winter, R., Noll, F., Bodensteiner, T, Glaser, W., and Hensel, F. (1988). Conductivity scattering and neutron–scattering experiments on expanded fluid cesium in the metal–nonmetal transition region. Z. Phys. Chemie., 156, 145– 149.

Yermokhin, N. V., Kulik, P. P., Riabyi, V. A., and Semionov, V. K. (1981). Dense plasma electric conductivity measurements in the region of pressure ionization. In Proceedings of the XV symposium on phenomena in ionized gases.

Contributed papers, Part 1. Minsk, pp. 363–364.

3

DYNAMIC METHODS IN THE PHYSICS OF NONIDEAL

PLASMA

The highest plasma parameters have been obtained by dynamic techniques (Fortov 1982) which permitted the realization, under controlled conditions, of record– high local concentrations of energy. These techniques are based on the accumulation of energy in the material under investigation either as a result of viscous dissipation in the front of shock waves which propagate throughout the material to cause its compression, acceleration, and irreversible heating, or as a result of adiabatic variation of pressure in the material. Without going into a detailed comparison between the electric and dynamic techniques, we shall emphasize that the high purity and homogeneity of the volume under investigation, the absence of electric and magnetic fields (hampering the diagnostics and causing the development of various instabilities in the plasma), the high reproducibility of results, and the possibility of attaining extremely high parameters render the dynamic techniques a convenient means for attaining and investigating the physical properties of highly nonideal plasma under extreme conditions. In addition, the application of the general laws of conservation of mass, momentum, and energy enables one to reduce (see Section 3.2) the recording of the thermodynamic characteristics of plasma to the registration of the kinematic parameters of the motion of shock discontinuities and interfaces (i.e., to the measurement of times and distances), which presents an additional important advantage of the dynamic techniques.

The use of shock waves in high–pressure physics enabled one to attain pressures of condensed matter of hundreds of thousands megapascals and, while so doing, perform extensive thermodynamic, optical, and electrophysical investigations (Altshuler 1965; Kormer 1968; Minaev and Ivanov 1976; Duvall and Graham 1977; Davison and Graham 1979). The use of such techniques in the physics of nonideal plasma (Fortov 1982) o ered possibility of considerably expanding the range of plasma pressures and temperatures to be investigated and made possible laboratory investigations of states with extremely high energy concentrations. Hence physical measurements in the regions of the phase diagram of matter, which used to be inaccessible to the traditional methods of plasma experiments, are possible.

In this chapter we shall consider three methods of dynamic generation of plasma, namely, shock and adiabatic compression and the method of adiabatic expansion of shock–compressed matter.

The shock compression technique appears most e ective from the standpoint

65