Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Physics of strongly coupled plasma (2006).pdf
Скачиваний:
85
Добавлен:
01.05.2014
Размер:
5.58 Mб
Скачать

22

NONIDEAL PLASMA. BASIC CONCEPTS

e ciency of up to 20%. Such converters are advantageous over semiconductor ones because they can greatly vary their characteristics upon variation of the applied pressure.

Another example of strongly nonideal plasmas is provided by dusty plasmas, which have various applications. These include electrophysics of rocket-fuel combustion products, production of microelectronic devices, plasma deposition and etching technologies, technologies of surface modification, etc. Dust particles are not only deliberately introduced in a plasma, but can also form and grow due to di erent physical processes, e.g., volume condensation upon the e ux of plasma from nozzles, upon the plasma expansion in the channel of an MHD generator, upon the expansion of aggregates of matter into a vacuum, in the products of ablation of a solid surface subjected to the e ect of high energy fluxes, etc. Dust and dusty plasmas are quite natural in space. They are present in planetary rings, comet tails, and interplanetary and interstellar clouds (Goertz 1989; Northrop 1992; Tsytovich 1997; Bliokh et al. 1995). Dusty plasmas are found in the vicinity of artificial satellites and space stations (Whipple 1981; Robinson and Coakley 1992) and in thermonuclear facilities with magnetic confinement (Tsytovich and Winter 1998; Winter and Gebauer 1999; Winter 2000).

A nonideal plasma results from powerful electric discharges in water and solids and its properties define the dynamics of motion of generated shock waves. Pulsed electric discharges in a liquid have found extensive industrial application, e.g., for intensifying mechanical and chemical production processes (Ivanov et al. 1982). The operation of such facilities is based on the use of high–voltage discharge in the liquid as the process of rapid conversion of the energy of a capacitor bank to mechanical work. The discharge duration is 105–104 s, with an energy density of 1014–1015 J m3, a temperature of 104–105 K and the pressure in the discharge channel up to 1 TPa. Under these conditions, the properties of a nonideal plasma, especially its electrical conductivity, a ect the process of both the formation and expansion of the current–conducting channel, as well as shock wave generation.

References

Alekseev, V. A., Vedenov, A. A., Krasitskaya, L. S., and Starostin, A. N. (1970). Thermoelectric power of cesium near critical temperatures and pressures. JETP Lett., 12, 351–354.

Artem’ev, A. A., Khrapak, A. G., and Yakubov, I. T. (1985). Multi–electron states in small dielectric particles. Sov. J. Low Temp. Phys., 11, 555–563.

Biberman, L. M., Likal’ter, A. A., and Yakubov, I. T. (1982). MHD generator on nonideal plasma of saturated alkali vapors. High Temp., 20, 565–572.

Bliokh, P., Sinitsin, V., and Yaroshenko, V. (1995). Dusty and self–gravitational plasmas in space. Kluwer Academic, Dordrecht.

Bouchoule, A. (1999). Technological impacts of dusty plasmas. In Dusty plasmas: Physics, chemistry and technological impacts in plasma processing, Bouchoule, A. (ed.), pp. 305–396. Wiley, Chichester.

REFERENCES

23

Brakner, K. and Jorna, S. (1973). Laser driven fusion. Fusion Inc., New York. Cole, M. W. (1974). Electronic surface states of liquid helium. Rev. Mod. Phys.,

46, 451–464.

Davidson, R. C. (1990). Physics of nonneutral plasmas. Addison–Wesley, Redwood City.

Dubin, D. H. E. and O’Neil, T. M. (1999). Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys., 71, 87–172.

Ebeling, W., Kreft, W. D., and Kremp, D. (1976). Theory of bound states and ionization equilibrium in plasmas and solids. Akademie-Verlag, Berlin.

Fortov, V. E., Molotkov, V. I., Nefedov, A. P., and Petrov, O. F. (1999). Liquid– and crystallike structures in strongly coupled dusty plasmas. Phys. Plasmas, 6, 1759–1768.

Fortov, V. E., Khrapak, A. G., Khrapak, S. A., Molotkov, V. I., and Petrov, O. F. (2004). Dusty plasmas. Phys. Usp., 47, 447–492.

Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G., Morfill, G. E. (2005). Complex (dusty) plasmas: Current status, open issues, perspectives.

Phys. Reports, 421, 1–103.

Goertz, C. K. (1989). Dusty plasmas in the solar system. Rev. Geophys., 27, 271–292.

Gryaznov, V. K., Iosilevskii, I. L., Krasnikov, Y. G., Kuznetsova, N. I., Kucherenko, V. I., Lappo, G. B., Lomakin, B. N., Pavlov, G. A., Son, E. E., Fortov, V. E. (1980). Thermophysical properties of gas core nuclear engine. Atomizdat, Moscow.

Iakubov, I. T. and Vorob’ev, V. S. (1974). MHD generator on nonideal plasma.

Astronautics Acta, 18, 79–83.

Ichimaru, S. (1982). Strongly coupled plasmas: high–density classical plasmas and degenerate electron liquids. Rev. Mod. Phys., 54, 1017–1059.

Ievlev, V. M. (1977). Some results of a study of a cavity–type gas–phase nuclear reactor. Energetika i Transport, No. 6, 24–31.

Ignatov, A. M. (2005). Basics of dusty plasma. Plasma Phys. Reports, 31, 46–56. Iosilevskii, I. L. (2000). General characteristic of the thermodynamic description of low temperature plasma (LTP). In Encyclopedia of low temperature plasma.

Introductory volume 1, Fortov, V. E. (ed.), pp. 275–293. Nauka, Moscow. Iosilevskii I. L., Krasnikov, Y. G., Son, E. E., and Fortov, V. E. (2000). Ther-

modynamics and transport in nonideal plasma. MFTI, Moscow.

Ivanov, V. V., Shvets, I. S., and Ivanov, A. V. (1982). Underwater spark discharges. Naukova Dumka, Kiev.

Je ries, C. D. and Keldysh, L. V. (eds). (1983). Electron–hole droplets in semiconductors. North–Holland, Amsterdam.

Kadomtsev, B. B. (1973). Lasers and thermonuclear problem. Atomizdat, Moscow.

Khrapak, A. G. and Iakubov, I. T. (1981). Electrons in dense gases and plasma. Nauka, Moscow.

24

NONIDEAL PLASMA. BASIC CONCEPTS

Kikoin, I. K., Senchenkov, A. P., Gelman, E. V., Korsunskii, M. M., and Naurza-

 

kov S. P. (1966). Electrical conductivity and density of a metal vapor. JETP,

22, 89–91.

Kirzhnits, D. A., Lozovik, Y. E., and Shpatakovskaya, G. V. (1975). Statistical model of matter. Sov. Phys. Uspekhi, 18, 3–48.

Klyuchnikov, N. I. and Triger, S. A. (1967). Thermodynamics of a system of strongly interacting charged particles. JETP, 25, 178–181.

Kudrin, L. P. (1974). Statistical physics of plasma. Nauka, Moscow.

Landau, L., and Lifshitz, E. (1980). Statistical physics. Pergamon Press, Oxford. Leiderer, P. (1995). Ions at helium interface. Z. Phys. B, 98, 303–308. Lepouter, M. (1965). Metal ammoniac solutions. Academic Press, New York. Merlino, R. L. and Goree, J. (2004). Dusty plasmas in the laboratory, industry,

and space. Phys. Today, 57, 32–38.

More, R. M. (1983). Atomic processes in high–density plasmas. In Atomic and molecular physics of controlled thermonuclear fusion, Joachain, C. J. and Post, D. E. (eds), pp. 399–440. Plenum Press, New York.

Nedospasov, A. B. (1977). The physics of MHD generators. Sov. Phys. Uspechi, 20, 861–869.

Northrop, T. G. (1992). Dusty plasmas. Phys. Scr., 45, 475–490.

Piel, A. and Melzer, A. (2002). Dynamical processes in complex plasmas. Plasma Phys. Control. Fusion, 44, R1–R26.

Prokhorov, A. M., Anisimov, S. I., and Pashinin, P. P. (1976). Laser thermonuclear fusion. Sov. Phys. Uspekhi, 19, 547–560.

Ragan. C. E. , Silbert, M. G., and Diven, B. C. (1977). Shock compression of molybdenum to 2.0 TPa by means of a nuclear explosion. J. Appl. Phys., 48, 2860–2870.

Robinson, P. A. and Coakley, P. (1992). Spacecraft charging–progress in the study of dielectrics and plasmas. IEEE Trans. Electr. Insul., 27, 944-960.

Shatzman, E. (1977). (private communication).

Shikin, V. B. and Monarkha, Y. P. (1989). Two–dimensional charged systems in helium (in Russian). Nauka, Moscow

Shukla, P. K. and Mamun, A. A. (2002). Introduction to dusty plasma physics. IOP, Bristol.

Smirnov, B. M. (1982). Introduction to plasma physics. Nauka, Moscow. Slattery, W. L., Doolen, G. D., and DeWitt, H. E. (1980). Improved equation

of state for the classical one–component plasma. Phys. Rev. A, 21, 2087–2095. Thom, K. and Schneider, R. T. (eds). (1971). Research of uranium plasmas and

their technological application. NASA, Washington.

Tsytovich, V. N. (1997). Dust plasma crystals, drops, and clouds. Phys. Uspekhi, 40, 53–94.

Tsytovich, V. N. and Winter, J. (1998). On the role of dust in fusion devices.

Phys. Uspekhi, 41, 815–822.

Tsytovich, V. N., Morfill, G. E., and Thomas H. (2002). Complex plasmas: I. Complex plasmas as unusual state of matter. Plasma Phys. Rep., 28, 623–651.

REFERENCES

25

Vedenov A. A. (1965). Thermodynamics of plasma. In Reviews of plasma physics. Vol. 1, Leontovich M. A. (ed.), pp. 312–326. Consultants Bureau, New York.

Vladimirov, S. V. and Ostrikov, K. (2004). Dynamic self–organization phenomena in complex ionized gas systems: New paradigms and technological aspects.

Phys. Reports, 393, 175–380.

Volodin, A. P., Khaykin, M. S., and Edel’man, V. S. (1977). Development of instability and bubblon production on a charged surface of liquid helium. JETP Lett., 26, 543–546.

Whipple, E. C. (1981). Potentials of surfaces in space. Rep. Prog. Phys., 44, 1197–1250.

Winter, J. (2000). Dust: A new challenge in nuclear fusion research? Phys. Plasmas, 7, 3862–3866.

Winter, J. and Gebauer, G. (1999). Dust in magnetic confinement fusion devices and its impact on plasma operation. J. Nucl. Mater., 266, 228–233.

Yakubov, I. T. and Khrapak, A. G. (1989). Thermophysical and electrophysical properties of low temperature plasma with condensed disperse phase. Sov. Tech. Rev. B. Therm. Phys., 2, 269–337.

Zel’dovich, Y. B. and Novikov, I. D. (1971). Relativistic astrophysics. University of Chicago Press, Chicago.