Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Physics of strongly coupled plasma (2006).pdf
Скачиваний:
85
Добавлен:
01.05.2014
Размер:
5.58 Mб
Скачать

398

NONNEUTRAL PLASMAS

γ = 1.00

γ = 0.75

γ = 0.60

γ = 0.50

 

γ = 0.35

γ = 0.20

 

γ= 0.05

γ= 0.01

Fig. 10.23. Configurations of a two–dimensional cluster containing 37 ions for di erent

values of the anisotropy parameter γ (Lozovik and Rakoch 1999).

The two–dimensional confinement can be anisotropic as well. Figure 10.23 shows di erent configurations of a two–dimensional Coulomb cluster of 37 ions, corresponding to di erent values of the anisotropy parameter (Lozovik and Rakoch 1998, 1999). Here, the parameter γ determines the anisotropy of the trap,

Uext = γ

xi2 + (2 − γ) yi2,

(10.11)

i

i

 

so that γ = 1 corresponds to circular symmetry. As γ increases the number of rings decreases and finally the cluster is stretched into a one–dimensional string with inhomogeneous interparticle distance.

As the temperature increases, the ion oscillations around the equilibrium increase as well and eventually the cluster melts (Lozovik 1987; Bedanov and Peeters 1994; Lozovik and Rakoch 1998, 1999). The melting occurs in two stages, both in two– and three–dimensional cases. At the first stage, when the temperature is relatively low, the orientational melting starts – the transition from the steady configuration to the state with enhanced rotational oscillations of the neighboring (rings) shells, yet the ions within each shell remain stable. At the second stage the radial order disappears as well. As the number of ions in a cluster increases, the first stage becomes less pronounced and the orientational melting can only be observed in a few shells near the surface.

References

Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1995). Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 269, 198–201.

Bedanov, V. M. and Peeters, F. M. (1994). Ordering and phase transitions of charge particles in a classical finite two–dimensional system. Phys. Rev. B, 49, 2667–2676.

REFERENCES

399

Bollinger, J. J. and Wineland, D. J. (1984). Strongly coupled nonneutral ion plasma. Phys. Rev. Lett., 53, 348–351.

Bollinger, J. J., Mitchell, T. B., Huang, X.–P., Itano, W. M., Tan, J. N., Jelenkovic, B. M., and Wineland, D. J. (2000). Crystalline order in laser–cooled, nonneutral ion plasmas. Phys. Plasmas, 7, 7–13.

Budker, G. I., Dikanskiy, N. S., Kudelaynen, V. I., Meshkov, I. N., Parchomchuk, V. V., Pestrikov, D. V., Skrinsky, A. N., and Sukhina, B. N. (1976). Experimental studies of electron cooling. Part. Accel., 7, 197–211.

Chu, S. (1999). The manipulation of neutral particles. Rev. Mod. Phys., 70, 685–706.

Cohen–Tannoudji, C. N. (1998). Manipulations atoms with photons. Rev. Mod. Phys., 70, 707–719.

Cole, M. W. (1974). Electronic surface states of liquid helium. Rev. Mod. Phys., 46, 451–464.

Davidson, R. C. (1974). Theory of nonneutral plasmas. Benjamin, Reading. Davidson, R. C. (1990). Physics of nonneutral plasmas. Addison–Wesley, Red-

wood City.

Dement’ev, E. N., Dikanskiy, N. S., Medvedko, A. S., Parkhomchuk, V. V., and Pestrikov, D. V. (1980). Measuring of the proton beam thermal noises on NAP–M storage. Soviet Phys.–JTP, 50, 1717–1721.

Drewsen, M., Brodersen, C., Hornekaer, L., Hangst, J. S., and Schi fer, J. P. (1998). Large ion crystals in a linear Paul trap. Phys. Rev. Lett., 81, 2878– 2881.

Dubin, D. H. E. (1996). E ect of correlations on the thermal equilibrium and normal modes of a nonneutral plasma. Phys. Rev. E, 53, 5268–5290.

Dubin, D. H. E. and O’Neil, T.M. (1999). Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys., 71, 87–172.

Fisher, D. S., Halperin, B. I., and Platzman, P. M. (1979). Phononripplon coupling and the two–dimensional electron solid on a liquid–helium surface. Phys. Rev. Lett., 42, 798–801.

Gilbert, S. L., Bollinger, J. J., and Wineland, D. J. (1988). Shell–structure phase of magnetically confined strongly coupled plasmas. Phys. Rev. Lett., 60, 2022–2025.

Grimes, C. C. and Adams, G. (1979). Evidence of liquid–to–crystal phase transition in a classical two–dimensional sheet of electrons. Phys. Rev. Lett., 42, 795–798.

H¨ansch, T. and Schawlow, A. (1975). Cooling of gases by laser radiation. Opt. Commun., 13, 68–69.

Hornekaer, L., Kjaergaard, N., Thommesen, A.M., and Drewsen, M. (2001). Structural properties of two–component Coulomb crystals in linear Paul traps.

Phys. Rev. Lett., 86, 1994–1997.

Ichimaru, S., Iyetomi, H., and Tanaka, S. (1987). Statistical physics of dense plasmas: Thermodynamics, transport coe cients and dynamic correlations.

Phys. Rep., 149, 91–205.

400

NONNEUTRAL PLASMAS

Letokhov, V. S., Minogin, V. G., and Pavlik, B. D. (1977). Cooling and capture of atoms and molecules by resonant light field. JETP, 45, 698–705.

Lozovik, Y. E. (1987). Ion and electron clusters. Phys.–Uspekhi, 30, 912–913. Lozovik, Y. E. and Mandelshtam, V. A. (1990). Coulomb clusters in a trap.

Phys. Lett. A, 145, 269–271.

Lozovik, Y. E. and Mandelshtam, V. A. (1992). Classical and quantum melting of a Coulomb cluster in a trap. Phys. Lett. A, 165, 469–472.

Lozovik, Y. E. and Rakoch, E. A. (1998). Energy barriers, structure, and two– stage melting of microclusters of vortices. Phys. Lett. A, 240, 311–321.

Lozovik, Y. E. and Rakoch, E. A. (1999). Structure, melting, and potential barriers in mesoscopic clusters of repulsive particles. JETP, 89, 1089–1102.

Morf, R. H. (1979). Temperature dependence of the shear modulus and melting of two–dimensional electron solid. Phys. Rev. Lett., 43, 931–935.

Neuhauser, W., Hohenstatt, M., Toschek, P., and Dehmelt, H. (1978). Optical– sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett., 41, 233–236.

Penning, F. M. (1936). The spark discharge in low pressure between coaxial cylinders in an axial magnet field. Physika, 3, 873–894.

Phillips, W. D. (1998). Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70, 721–741.

Rafac, R., Schi er, J. P., Hangst, J. S., Dubin, D. H. E., and Wales, D. J. (1991). Stable configurations of confined cold ionic systems. Proc. Natl. Acad. Sci. USA., 88, 483–486.

Rahman, A. and Schi er, J. P. (1986). Structure of a one–component plasma in an external field: A molecular dynamic study of particle arrangement in a heavy–ion storage ring. Phys. Rev. Lett., 57, 1133–1136.

Raizen, M. G., Gilligan, J. M., Bergquist,W. M., Itano, W. M., and Wineland, D. J. (1992). Ionic crystals in linear Paul trap. Phys. Rev. A, 45, 6493–6501.

Sch¨atz, T., Schramm, U., and Habs, D. (2001). Crystalline ion beams. Nature, 412, 717–720.

Schi er, J. P. (2002). Melting of crystalline confined plasmas. Phys. Rev. Lett., 88, 205003/1–4.

Schramm, U., Sch¨atz, T., and Habs, D. (2001). Bunched crystalline ion beams.

Phys. Rev. Lett., 87, 184801/1–4.

Schramm, U., Sch¨atz, T., and Habs, D. (2002). Three–dimensional crystalline ion beams. Phys. Rev. E, 66, 036501/1–9.

Shikin, V. B. (1977). Mobility of charges in liquid, solid, and gaseous helium.Sov. Phys. Uspekhi, 20, 226–248.

Shikin, V. B. and Monarkha, Y. P. (1989). Two–dimensional charged systems in helium (in Russian). Nauka, Moscow

Totsuji, H., Kishimoto, T., Totsuji, C., and Tsuruta, K. (2002). Competition between two forms of ordering in finite Coulomb clusters. Phys. Rev. Lett., 88, 125002/1–4.

REFERENCES

401

Tsuruta, K. and Ichimaru, S. (1993). Binding energy, micrustructure, and shell model of Coulomb clusters. Phys. Rev. A, 48, 1339–1344.

Wieman, C. E., Pritchard, D. E., and Wineland, D. J. (1999). Atom cooling, trapping, and quantum manipulation. Rev. Mod. Phys., 71, S253–S262.

Wigner, E. (1934). On the interaction of electrons in metals. Phys. Rev., 46, 1002–1011.

Wineland, D. and Dehmelt, H. (1975). Proposed 1014ν < ν laser fluorescence spectroscopy on Tl+ mono–ion oscillator III. Bull. Am. Phys. Soc., 20, 637.

Wineland, D., Drullinger, R. and Walls, F. (1978). Radiation–pressure cooling of bound resonant absorbers. Phys. Rev. Lett., 40, 1639–1642.

Wineland, D. J., Bollinger, J. J., Itano, W. M., and Prestage, J. D. (1985). Angular–momentum of trapped atomic particles. J. Opt. Soc. Am. B, 2, 1721– 1729.