Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диффиренциальное исчисление..doc
Скачиваний:
38
Добавлен:
13.08.2019
Размер:
3.87 Mб
Скачать

1.2.2. Ограниченные и неограниченные последователь-

ности

Определение.

Последовательность называется ограниченной сверху (снизу), если существует такое число M (m), что каждый член xn последовательности удовлетворяет неравенству При этом M и m называются соответственно верхней и нижней гранями последовательности .

Очевидно, любая ограниченная сверху последователь-ность имеет бесконечное число верхних граней: любое число M*, большее M, также является верхней гранью. Аналогичное замечание имеет место для нижней грани.

Определение.

Последовательность называется ограниченной с обеих сторон или просто ограниченной, если она ограничена и сверху и снизу, т.е. если существует такие числа m и M, что любой член последовательности xn удовлетворяет неравенствам

Если последовательность ограничена и M и m – ее верхняя и нижняя грани, то все члены xn этой последовательности удовлетворяют неравенству

, (*)

где

Верно и обратное: если все члены последовательности xn удовлетворяют неравенству (*), то последовательность ограничена.

Последовательность называется неограниченной, если для любого А>0 найдется член xn этой последовательности, удовлетворяющий неравенству

.

Примеры:

Рассмотрим последовательность

1) .

Эта последовательность ограничена. Действительно, любое число является ее верхней гранью, а любое число – нижней гранью.

2) –1, –4 , –9 , ... , –n2, ... .

Последовательность ограничена сверху и не ограничена снизу.

3) –1, 2, –3, 4, ... .

Последовательность не ограничена.

1.2.3. Бесконечно малые и бесконечно большие последо-

вательности

Определение.

Последовательность называется бесконечно большой, если для любого А>0 можно указать номер такой, что при все члены xn этой последовательности удовлетворяют неравенству .

Замечание.

Любая бесконечно большая последовательность является неограниченной; однако неограниченная последовательность может и не быть бесконечно большой. Пример: последовательность 1, 2, 1, 3, …, 1, n,... является неограниченной, но не является бесконечно большой, т.к. при A>1 неравенство не имеет места для всех членов xn с нечетными номерами.

Определение.

Последовательность называется бесконечно малой, если для любого можно указать номер такой, что при все члены этой последовательности удовлетворяют неравенству .

Примеры:

  1. Доказать, что последовательность является бесконечно большой, а при бесконечно малой.

а) Пусть . Тогда , где .

+(положительные члены), т.е. Теперь зафиксируем произвольное число A>0 и выберем N столь большим, чтобы (например, выберем ). Тогда . Но при и ,т.е. Утверждение доказано.

б) Пусть . В этом случае

Теперь

. Зафиксируем произвольное и выберем номер N из условия . Т.к. и при , то из полученных неравенств вытекает, что . Утверждение доказано.

  1. Докажем, что – бесконечно малая последовательность. В самом деле, если Поэтому по заданному достаточно выбрать номер N из условия . Тогда при и утверждение доказано.

Теорема.

Если – сходящаяся последовательность и то – бесконечно малая последовательность.

Доказательство:

Т.к. для любого можно найти номер такой, что при выполняется неравенство , это и означает, что при , т.е. – бесконечно малая последовательность.

Из этой теоремы следует, что члены сходящейся последовательности могут быть представлены в виде:

где – бесконечно малая последователь-ность.

1.2.4. Теоремы о бесконечно малых последовательно-

стях

Теорема 1.

Сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Доказательство.

Пусть и – бесконечно малые последовательности. Докажем, что – бесконечно малая последовательность. Пусть – произвольное число, N1 – номер, начиная с которого , а N2 – номер, начиная с которого . Тогда, если , то при , т.е. . Теорема доказана.

Теорема 2.

Разность двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема доказывается аналогично предыдущей, только вместо неравенства следует взять неравенство .

Следствие.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 3.

Бесконечно малая последовательность ограничена.

Доказательство:

Пусть – бесконечно малая последовательность и – произвольное число. Пусть N – номер, начиная с которого . Тогда любой член последовательности с номером ограничен по модулю числом . Из оставшихся первых членов выберем наибольший по модулю: и зададим . Тогда для всех членов последовательности , что и означает ограниченность последовательности. Теорема доказана.

Теорема 4.

Произведение ограниченной последовательности на бесконечно малую последовательность представляет собой бесконечно малую последовательность.

Доказательство:

Пусть – ограниченная, а – бесконечно малая последовательности. Т.к. ограничена, то существует число A>0, такое, что любой член xn удовлетворяет неравенству Возьмем произвольное . Поскольку – бесконечно малая последовательность, то для положительного числа можно указать номер N такой, что при . Тогда при . Поэтому последовательность – бесконечно малая. Теорема доказана.

Следствие.

Произведение любого конечного числа бесконечно малых последовательностей представляет собой бесконечно малую последовательность.

Теорема 5.

Если – бесконечно большая последовательность, то начиная с некоторого номера n определена последовательность , которая является бесконечно малой последовательностью. Если все элементы бесконечно малой последовательности не равны нулю, то последовательность бесконечно большая.

Доказательство:

Во-первых, надо четко понимать, почему в формулировке теоремы имеются слова “начиная с некоторого номера”. Дело в том, что у бесконечно большой последовательности могут встретиться нулевые члены и тогда последовательность не определена. Но вспомним определение бесконечно большой последовательности – у этой последовательности, начиная с некоторого номера N*, все члены по модулю превосходят любое положительное число A. Следовательно, у бесконечно большой последовательности нулевых членов может быть лишь конечное число. Другими словами, начиная с номера N*, последовательность оказывается определенной и формулировка теоремы справедлива для n>N*.

Докажем теперь, что – бесконечно малая последовательность. Пусть – любое положительное число. Для числа можно указать номер такой, что при члены xn последовательности удовлетворяют неравенству . Поэтому, начиная с указанного номера N, выполняется неравенство .

Таким образом, доказано, что – бесконечно малая последовательность.

Доказательство второй части теоремы провести самостоятельно (оно аналогично только что приведенному).