Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Технология материалов.docx
Скачиваний:
32
Добавлен:
21.09.2019
Размер:
666.26 Кб
Скачать

1. Предмет, методы и объекты изучения дисциплины «Технология материалов».

Материаловедение — междисциплинарный раздел науки, изучающий изменения свойств материалов, как в твёрдом, так и в жидком состоянии в зависимости от некоторых факторов. К изучаемым свойствам относятся структура веществ, электронные, термические, химические, магнитные, оптические свойства этих веществ. Материаловедение можно отнести к тем разделам физики и химии, которые занимаются изучением свойств материалов. Кроме того, эта наука использует целый ряд методов, позволяющих исследовать структуру материалов. При изготовлении наукоёмких изделий в промышленности, особенно при работе с объектами микро- и наноразмеров необходимо детально знать характеристику, свойства и строение материалов. Решить эти задачи и призвана наука — материаловедение.

Знание структуры и свойств материалов приводит к созданию принципиально новых продуктов и даже отраслей индустрии. Однако и классические отрасли также широко используют знания, полученные учёными-материаловедами для нововведений, устранения проблем, расширения ассортимента продукции, повышения безопасности и понижения стоимости производства. Эти нововведения были сделаны для процессов литья, проката стали, сварки, роста кристаллов, приготовления тонких плёнок, обжига, дутья стекла и др.

Методы, используемые материаловедением: металлографический анализ, электронная микроскопия, сканирующая зондовая микроскопия, рентгеноструктурный анализ, механические свойства, калориметрия, ядерный магнитный резонанс, термография.

Разделы наук, на которых базируется материаловедение

Термодинамика — для изучения стабильности, изменений фаз, для построения фазовых диаграмм.

Термический анализ, термогравиметрия — для изучения изменения свойств материалов при воздействии температуры и при взаимодействии с различными газами.

Кинетика — при изучении изменений фазового состояния вещества, термического разложения структуры и диффузии.

Химия твёрдого тела — для изучения химических процессов, проходящих в твёрдой фазе.

Физика твёрдого тела — для изучений квантовых эффектов в твёрдых материалах, например, исследование полупроводников и сверхпроводников.

2. Общая классификация и характеристика свойств материалов.

Механические и технологич св-ва км.

Механические св-ва: показ отношение мат-ов к различным мех воздействиям. По ним рассчитыв конструкции:

1) Прочность; 2) предел текучести; 3) предел пропорциональности; 4) ударная вязкость.

Технологические св-ва: показ отношение мет-ов к различным технологиям обработки.

1) Литейные св-ва – как мат-л относится к литью

2) Ковкость 0 отнош-е м-ов к диф-ям под давлением

3) Свариваемость

4) Обработка резанием

5) отношение к физико-хим методам обработки

Металлы с точки зрения физики и техники обладают общностью атома кристаллического строения и характерными физическими свойствами.

Все металлы обладают рядом свойств: специфическим блеском, хорошей электро-и теплопроводностью, способностью давать основные окислы и т. д.

Химические свойства металлов определяются активностью подвижных электронов, непрочно связанных с атомами.

3. Особенности кристаллического строения металлов и сплавов.

Кристаллизация металлов. При переходе металла из жидкого состояния в твердое происходит образование кристаллов. Атомы из хаотичного разброса занимают строго определенное место в кристаллической решетке.

Этот сложный процесс можно схематично представить следующим образом: при охлаждении расплавленного металла в нем зарождаются центры кристаллизации, от которых происходит рост конгломерата кристаллов — кристаллического зерна. При росте кристаллических зерен они сталкиваются и срастаются друг с другом, приобретая неправильную деформированную гроздеподобную или древовидную форму.

Скорость зарождения центров кристаллизации и роста зерен зависит от явления, называемого переохлаждением. Сущность явления состоит в том, что при охлаждении металла температура начала его кристаллизации ниже температуры плавления. Это свойственно всем металлам, хотя и не в одинаковой степени. Чем больше переохлаждение металла, тем большее количество центров кристаллизации образуется. Это приводит к формированию мелкозернистой структуры, имеющей более высокие механические показатели по сравнению с крупнозернистой. Ускорение процесса кристаллизации наблюдается, если в металле имеются нерастворимые примеси, являющиеся своеобразными центрами кристаллизации.

Сплавы. Для зуботехнических целей необходимы металлы, обладающие самыми разнообразными свойствами. Так, основные металлы должны обладать высокими физико-механическими свойствами, устойчивостью к коррозии, некоторые вспомогательные — низкой температурой плавления. Все металлы по своим свойствам должны соответствовать требованиям технологии: обладать нужной температурой плавления, быть ковкими или, наоборот, упругими, иметь допустимую усадку, коэффициент термического расширения и т. д. Этим требованиям в большей степени отвечают различные сплавы. Создание сплавов возможно потому, что многие металлы способны к взаимному растворению или к образованию химических соединений, другие — к образованию смесей.

Подбирая различные металлы в нужных соотношениях, можно получить сплавы с необходимыми свойствами, нередко существенно отличающимися от свойств каждого из компонентов.

Твердый раствор. Кристаллическая структура сплавов этой группы представляет собой решетку основного металла, в которой размещены атомы растворенного металла. Элементы таких сплавов способны к взаимному растворению как в жидком, так и в твердом состоянии. Примерами такого типа соединений являются широко применяемые в ортопедической стоматологии сплавы на основе золота, хромо-никелевые, хромокобальтовые, железоуглеродистые сплавы.

При затвердевании металла слиток может приобрести различную структуру, которая характеризуется большей или меньшей неоднородностью, что зависит от состава сплава, скорости охлаждёния и ряда других факторов.

Возникновение неоднородности связано с особенностями процесса кристаллизации сплава, компоненты которого имеют разные точки плавления.