Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вышка типо ответы.docx
Скачиваний:
2
Добавлен:
26.09.2019
Размер:
559.18 Кб
Скачать

16. Направление выпуклости и точки перегиба графика функции. Необходимые и достаточные условия.

Определения и понятия.

Дифференцируемая функция называется выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х. Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х. Выпуклую вверх функцию часто называют выпуклой, а выпуклую вниз – вогнутой.

Точка называется точкой перегиба графика функции y = f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки , в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости. Другими словами, точка М называется точкой перегиба графика функции, если в этой точке существует касательная и график функции меняет направление выпуклости, проходя через нее.

Нахождение интервалов выпуклости функции.

Сформулируем теорему, которая позволяет определять промежутки выпуклости функции.

Если функция y = f(x) имеет конечную вторую производную на интервале Х и если выполняется неравенство ( ), то график функции имеет выпуклость направленную вниз (вверх) на Х. Эта теорема позволяет находитьть промежутки вогнутости и выпуклости функции, нужно лишь на области определения исходной функции решить неравенства и соответственно. Следует отметить, что точки, в которых функция y = f(x) определена, а вторая производная не существует, будем включать в интервалы вогнутости и выпуклости.

Необходимое и достаточные условия перегиба.

Сформулируем необходимое условие перегиба графика функции.

Пусть график функции y = f(x) имеет перегиб в точке и имеет при непрерывную вторую производную, тогда выполняется равенство .Из этого условия следует, что абсциссы точек перегиба следует искать среди тех, в которых вторая производная функции обращается в ноль. НО, это условие не является достаточным, то есть не все значения , в которых вторая производная равна нулю, являются абсциссами точек перегиба.Еще следует обратить внимание, что по определению точки перегиба требуется существование касательной прямой, можно и вертикальной. Что это означает? А означает это следующее: абсциссами точек перегиба могут быть все из области определения функции, для которых и . Обычно это точки, в которых знаменатель первой производной обращается в ноль.После того как найдены все , которые могут быть абсциссами точек перегиба, следует воспользоваться первым достаточным условием перегиба графика функции.Пусть функция y = f(x) непрерывна в точке , имеет в ней касательную (можно вертикальную) и эта функция имеет вторую производную в некоторой окрестности точки . Тогда, если в пределах этой окрестности слева и справа от , вторая производная имеет разные знаки, то является точкой перегиба графика функции.Как видите первое достаточное условие не требует существования второй производной в самой точке , но требует ее существование в окрестности точки .Сейчас обобщим всю информацию в виде алгоритма.Алгоритм нахождения точек перегиба функции.Находим все абсциссы возможных точек перегиба графика функции ( или и ) и выясняем, проходя через какие вторая производная меняет знак. Такие значения и будут абсциссами точек перегиба, а соответствующие им точки будут точками перегиба графика функции. Второе достаточное условие перегиба графика функции.Если , а , тогда является абсциссой точки перегиба графика функции y = f(x). Третье достаточное условие перегиба графика функции.Пусть , а , тогда если n – четное число, то является абсциссой точки перегиба графика функции y = f(x).